Xiaofang Geng, Lu Zhang, Xiayan Zang, Jianlin Guo, Cunshuan Xu
{"title":"RNA-seq analysis provides insight into molecular adaptations of Andrias davidianus.","authors":"Xiaofang Geng, Lu Zhang, Xiayan Zang, Jianlin Guo, Cunshuan Xu","doi":"10.1007/s00427-019-00641-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Chinese giant salamander Andrias davidianus is regarded as an ideal model for studying local adaptations, such as longevity, tolerance to starvation, and cutaneous respiration. Transcriptome analysis is useful for studying the large and complex genomes of amphibians. Based on the coding gene set of adult A. davidianus, dozens of A. davidianus-specific genes were identified and three signaling pathway (JAK-STAT, HIF-1, and FoxO) genes were expanded as compared with other amphibians. The results of the pathway analysis of A. davidianus-specific genes indicated that the molecular adaptation of A. davidianus may have required a more rapid evolution of the immune system. Additionally, for the first time, the gene expressions in different parts of the skin tissue were compared. The results of the comparison analysis demonstrated that lateral skin could be more focused on mucus secretion, dorsal skin on immunity and melanogenesis, and abdominal skin on water and salt metabolism. This study provides the first insight into studying longevity and starvation tolerance in A. davidianus, and offers a basis for further investigation of the molecular mechanisms of adaptations in amphibians.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"70 1","pages":"197-206"},"PeriodicalIF":0.8000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Genes and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00427-019-00641-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Chinese giant salamander Andrias davidianus is regarded as an ideal model for studying local adaptations, such as longevity, tolerance to starvation, and cutaneous respiration. Transcriptome analysis is useful for studying the large and complex genomes of amphibians. Based on the coding gene set of adult A. davidianus, dozens of A. davidianus-specific genes were identified and three signaling pathway (JAK-STAT, HIF-1, and FoxO) genes were expanded as compared with other amphibians. The results of the pathway analysis of A. davidianus-specific genes indicated that the molecular adaptation of A. davidianus may have required a more rapid evolution of the immune system. Additionally, for the first time, the gene expressions in different parts of the skin tissue were compared. The results of the comparison analysis demonstrated that lateral skin could be more focused on mucus secretion, dorsal skin on immunity and melanogenesis, and abdominal skin on water and salt metabolism. This study provides the first insight into studying longevity and starvation tolerance in A. davidianus, and offers a basis for further investigation of the molecular mechanisms of adaptations in amphibians.
期刊介绍:
Development Genes and Evolution publishes high-quality reports on all aspects of development biology and evolutionary biology. The journal reports on experimental and bioinformatics work at the systemic, cellular and molecular levels in the field of animal and plant systems, covering key aspects of the following topics:
Embryological and genetic analysis of model and non-model organisms
Genes and pattern formation in invertebrates, vertebrates and plants
Axial patterning, embryonic induction and fate maps
Cellular mechanisms of morphogenesis and organogenesis
Stem cells and regeneration
Functional genomics of developmental processes
Developmental diversity and evolution
Evolution of developmentally relevant genes
Phylogeny of animals and plants
Microevolution
Paleontology.