Automatically Estimate Clusters in Autoencoder-based Clustering Model for Anomaly Detection

Van Quan Nguyen, V. H. Nguyen, Nhien-An Le-Khac, V. Cao
{"title":"Automatically Estimate Clusters in Autoencoder-based Clustering Model for Anomaly Detection","authors":"Van Quan Nguyen, V. H. Nguyen, Nhien-An Le-Khac, V. Cao","doi":"10.1109/RIVF51545.2021.9642120","DOIUrl":null,"url":null,"abstract":"In a previous work, a clustering-based method had been incorporated with the latent feature space of an autoencoder to discover sub-classes of normal data for anomaly detection. However, the work has the limitation in manually setting up the numbers of clusters in the normal training data. Finding a proper number of clusters in datasets is often ambiguous and highly depends on the characteristics of datasets. This paper proposes a novel data-driven empirical approach for automatically identifying the number of normal sub-classes (clusters) without human intervention. This clustering-based method, afterward, is co-trained with an autoencoder to automatically discover the appreciated number of clusters of normal training data in the middle hidden layer of the autoencoder. The resulting clustering centers are then used to identify anomalies in querying data. Our approach is tested on four scenarios from the CTU13 datasets, and the experimental results show that the proposed model often perform better than those of the model in the previous work on almost scenarios.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a previous work, a clustering-based method had been incorporated with the latent feature space of an autoencoder to discover sub-classes of normal data for anomaly detection. However, the work has the limitation in manually setting up the numbers of clusters in the normal training data. Finding a proper number of clusters in datasets is often ambiguous and highly depends on the characteristics of datasets. This paper proposes a novel data-driven empirical approach for automatically identifying the number of normal sub-classes (clusters) without human intervention. This clustering-based method, afterward, is co-trained with an autoencoder to automatically discover the appreciated number of clusters of normal training data in the middle hidden layer of the autoencoder. The resulting clustering centers are then used to identify anomalies in querying data. Our approach is tested on four scenarios from the CTU13 datasets, and the experimental results show that the proposed model often perform better than those of the model in the previous work on almost scenarios.
基于自编码器的异常检测聚类模型中的自动估计聚类
在之前的研究中,将基于聚类的方法与自编码器的潜在特征空间相结合,发现正常数据的子类,用于异常检测。然而,该工作在手动设置正常训练数据中的聚类数量方面存在局限性。在数据集中找到适当数量的聚类通常是模糊的,并且高度依赖于数据集的特征。本文提出了一种新的数据驱动的经验方法,用于在没有人为干预的情况下自动识别正常子类(簇)的数量。然后,将这种基于聚类的方法与自编码器共同训练,自动发现自编码器中间隐藏层中正常训练数据的所需簇数。然后使用生成的聚类中心来识别查询数据中的异常情况。我们的方法在来自CTU13数据集的四个场景上进行了测试,实验结果表明,我们提出的模型在几乎所有场景下的表现都优于之前的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信