TopQA: a topological representation for single-model protein quality assessment with machine learning

John Smith, Matthew Conover, Natalie Stephenson, Jesse Eickholt, Dong Si, Miao Sun, Renzhi Cao
{"title":"TopQA: a topological representation for single-model protein quality assessment with machine learning","authors":"John Smith, Matthew Conover, Natalie Stephenson, Jesse Eickholt, Dong Si, Miao Sun, Renzhi Cao","doi":"10.1504/ijcbdd.2020.10026784","DOIUrl":null,"url":null,"abstract":"Correctly predicting the complex three-dimensional structure of a protein from its sequence would allow for a superior understanding of the function of specific proteins with many applications. We propose a novel method aimed to tackle a crucial step in the protein prediction problem, assessing the quality of generated predictions. Unlike traditional methods, our method, to the best of our knowledge, is the first to analyse the topology of the predicted structure. We found that our new representation provided accurate information regarding the location of the protein's backbone. Using this information, we implemented a novel algorithm based on convolutional neural network (CNN) to predict GDT_TS score for given protein models. Our method has shown promising results - overall correlation of 0.41 on CASP12 dataset. Future work will aim to implement additional features into our representation. The software is freely available at GitHub: https://github.com/caorenzhi/TopQA.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"117 1","pages":"144-153"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2020.10026784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Correctly predicting the complex three-dimensional structure of a protein from its sequence would allow for a superior understanding of the function of specific proteins with many applications. We propose a novel method aimed to tackle a crucial step in the protein prediction problem, assessing the quality of generated predictions. Unlike traditional methods, our method, to the best of our knowledge, is the first to analyse the topology of the predicted structure. We found that our new representation provided accurate information regarding the location of the protein's backbone. Using this information, we implemented a novel algorithm based on convolutional neural network (CNN) to predict GDT_TS score for given protein models. Our method has shown promising results - overall correlation of 0.41 on CASP12 dataset. Future work will aim to implement additional features into our representation. The software is freely available at GitHub: https://github.com/caorenzhi/TopQA.
TopQA:基于机器学习的单模型蛋白质质量评估的拓扑表示
从蛋白质序列中正确预测蛋白质复杂的三维结构,将有助于更好地理解特定蛋白质的功能,并具有许多应用价值。我们提出了一种新的方法,旨在解决蛋白质预测问题的关键步骤,评估生成预测的质量。与传统方法不同,据我们所知,我们的方法是第一个分析预测结构的拓扑结构的方法。我们发现我们的新表示提供了关于蛋白质骨架位置的准确信息。利用这些信息,我们实现了一种基于卷积神经网络(CNN)的新算法来预测给定蛋白质模型的GDT_TS评分。我们的方法在CASP12数据集上显示了很好的结果——总体相关系数为0.41。未来的工作将致力于在我们的表示中实现额外的功能。该软件可以在GitHub上免费获得:https://github.com/caorenzhi/TopQA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信