Hierarchical Module Classification in Mixed-initiative Conversational Agent System

Sia Xin Yun Suzanna, A. Li
{"title":"Hierarchical Module Classification in Mixed-initiative Conversational Agent System","authors":"Sia Xin Yun Suzanna, A. Li","doi":"10.1145/3132847.3133185","DOIUrl":null,"url":null,"abstract":"Our operational context is a task-oriented dialog system where no single module satisfactorily addresses the range of conversational queries from humans. Such systems must be equipped with a range of technologies to address semantic, factual, task-oriented, open domain conversations using rule-based, semantic-web, traditional machine learning and deep learning. This raises two key challenges. First, the modules need to be managed and selected appropriately. Second, the complexity of troubleshooting on such systems is high. We address these challenges with a mixed-initiative model that controls conversational logic through hierarchical classification. We also developed an interface to increase interpretability for operators and to aggregate module performance.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our operational context is a task-oriented dialog system where no single module satisfactorily addresses the range of conversational queries from humans. Such systems must be equipped with a range of technologies to address semantic, factual, task-oriented, open domain conversations using rule-based, semantic-web, traditional machine learning and deep learning. This raises two key challenges. First, the modules need to be managed and selected appropriately. Second, the complexity of troubleshooting on such systems is high. We address these challenges with a mixed-initiative model that controls conversational logic through hierarchical classification. We also developed an interface to increase interpretability for operators and to aggregate module performance.
混合主动会话代理系统中的分层模块分类
我们的操作上下文是一个面向任务的对话系统,其中没有一个模块能令人满意地处理来自人类的一系列会话查询。这样的系统必须配备一系列技术,以解决基于规则、语义网、传统机器学习和深度学习的语义、事实、任务导向、开放领域对话。这就提出了两个关键挑战。首先,需要适当地管理和选择模块。其次,在此类系统上进行故障排除的复杂性很高。我们使用混合主动模型来解决这些挑战,该模型通过分层分类控制会话逻辑。我们还开发了一个接口来提高运算符的可解释性和聚合模块性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信