{"title":"Universal enveloping algebra of a pair of compatible Lie brackets","authors":"V. Gubarev","doi":"10.1142/S0218196722500588","DOIUrl":null,"url":null,"abstract":"Applying the Poincare-Birkhoff-Witt property and the Groebner-Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over $n$-dimensional compatible Lie algebra equals $n+1$.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"1 1","pages":"1335-1344"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196722500588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Applying the Poincare-Birkhoff-Witt property and the Groebner-Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of V. Ginzburg and M. Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over $n$-dimensional compatible Lie algebra equals $n+1$.