Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer

IF 0.6 4区 数学 Q3 MATHEMATICS
A. Vahidi, Mahdieh Papari-Zarei
{"title":"Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer","authors":"A. Vahidi, Mahdieh Papari-Zarei","doi":"10.33044/REVUMA.1786","DOIUrl":null,"url":null,"abstract":". Let n be a non-negative integer, R a commutative Noetherian ring with dim( R ) ≤ n + 2, a an ideal of R , and X an arbitrary R -module. In this paper, we first prove that X is an (FD <n , a )-cofinite R -module if X is an a -torsion R -module such that Hom R (cid:0) R a ,X (cid:1) and Ext 1 R (cid:0) R a ,X (cid:1) are FD <n R -modules. Then, we show that H i a ( X ) is an (FD <n , a )-cofinite R -module and { p ∈ Ass R (H i a ( X )) : dim (cid:0) R p (cid:1) ≥ n } is a finite set for all i when Ext iR (cid:0) R a ,X (cid:1) is an FD <n R -module for all i ≤ n + 2. As a consequence, it follows that Ass R (H i a ( X )) is a finite set for all i whenever R is a semi-local ring with dim( R ) ≤ 3 and X is an FD < 1 R -module. Finally, we observe that the category of (FD <n , a )-cofinite R -modules forms an Abelian subcategory of the category of R -modules.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"10 1","pages":"191-198"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/REVUMA.1786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Let n be a non-negative integer, R a commutative Noetherian ring with dim( R ) ≤ n + 2, a an ideal of R , and X an arbitrary R -module. In this paper, we first prove that X is an (FD
维数小于固定整数的模类中局部上同模的余性
. 设n为非负整数,R为dim(R)≤n + 2的交换诺瑟环,a为R的理想,X为任意R -模。本文首先证明了如果X是a -扭转R -模,使得hm R (cid:0) R a,X (cid:1)和Ext 1 R (cid:0) R a,X (cid:1)是FD
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信