Spinal cord thermosensitivity: An afferent phenomenon?

J. Brock, R. McAllen
{"title":"Spinal cord thermosensitivity: An afferent phenomenon?","authors":"J. Brock, R. McAllen","doi":"10.1080/23328940.2016.1157665","DOIUrl":null,"url":null,"abstract":"ABSTRACT We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these ‘cold’ and ‘warm’ ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming ‘cold’ afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the ‘warm’ pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature.","PeriodicalId":22565,"journal":{"name":"Temperature: Multidisciplinary Biomedical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature: Multidisciplinary Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2016.1157665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

ABSTRACT We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these ‘cold’ and ‘warm’ ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming ‘cold’ afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the ‘warm’ pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature.
脊髓热敏性:传入现象?
我们回顾了哺乳动物脊髓中温度调节传感器的证据,得出以下结论。1)脊髓温度在生理上参与温度调节。2)平行的前外侧上行通路传递脊髓降温和脊髓升温信号:它们与背角神经元各自的轴突通路重叠,这些轴突通路由外周冷敏感和热敏感传入神经驱动。3)我们假设这些“冷”和“热”上行通路将所有颅外热感觉信息传递给大脑。4)皮肤冷传入不仅可以通过冷却皮肤来激活,还可以通过冷却轴突上的一些部位来激活:我们认为这在体内的功能上是微不足道的。5)脊髓局部冷却通过中枢末端的突触前作用,增强了从传入的“冷”传入动作电位到背角二级神经元的神经传递;当脊髓处于温暖状态时,这种效应就消失了。6)脊髓温敏是由于背角传入末端的温敏微型囊状递质释放所致:这种效应强大到足以刺激“温暖”通路中的二级神经元,而不依赖于任何传入的感觉交通。7)因此,在冷敏感和热敏感的传入末端,不同但相关的突触前机制可以解释脊髓温度的温度调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信