A Comparative Study of effective techniques for solving a new model of (1+n) dimensional fractional Burgers’ equation

M. Bahgat, H. Ahmed, Mofida Zaki
{"title":"A Comparative Study of effective techniques for solving a new model of (1+n) dimensional fractional Burgers’ equation","authors":"M. Bahgat, H. Ahmed, Mofida Zaki","doi":"10.21608/djs.2022.150063.1031","DOIUrl":null,"url":null,"abstract":"Laplace Adomian decomposition method, Caputo The present work offers a new model of (n+1)-dimensional fractional Burgers’ equation ((n+1)D-FBE) and presents a comparative numerical study of three efficient semi analytical techniques for solving the ((n+1)D-FBEs). These techniques include the Laplace Adomian decomposition method (LADM), the Laplace variational iteration method (LVIM) and the reduced differential transform method (RDTM). The suggested approaches consider the use of the suitable initial conditions and find the solutions without any discretization or limiting traditions. Furthermore, their solutions are in the form of quickly convergent series with easily calculable terms. Numerical studies of four numerical applications are provided to certify the effectiveness and reliability of the suggested approaches, also to compare their computational effectiveness with each other and with other supplementary methods in the available literature. In addition to explore the properties of the solutions when changing the fractional derivative parameter. Numerical results demonstrate the effectiveness and accuracy of the suggested methods.","PeriodicalId":11368,"journal":{"name":"Delta Journal of Science","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Delta Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/djs.2022.150063.1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laplace Adomian decomposition method, Caputo The present work offers a new model of (n+1)-dimensional fractional Burgers’ equation ((n+1)D-FBE) and presents a comparative numerical study of three efficient semi analytical techniques for solving the ((n+1)D-FBEs). These techniques include the Laplace Adomian decomposition method (LADM), the Laplace variational iteration method (LVIM) and the reduced differential transform method (RDTM). The suggested approaches consider the use of the suitable initial conditions and find the solutions without any discretization or limiting traditions. Furthermore, their solutions are in the form of quickly convergent series with easily calculable terms. Numerical studies of four numerical applications are provided to certify the effectiveness and reliability of the suggested approaches, also to compare their computational effectiveness with each other and with other supplementary methods in the available literature. In addition to explore the properties of the solutions when changing the fractional derivative parameter. Numerical results demonstrate the effectiveness and accuracy of the suggested methods.
求解(1+n)维分数阶Burgers方程新模型有效方法的比较研究
本文提出了一种新的(n+1)维分数阶Burgers方程((n+1)D-FBE)模型,并对求解((n+1)D-FBE的三种有效半解析方法进行了数值比较研究。这些技术包括拉普拉斯Adomian分解法(LADM)、拉普拉斯变分迭代法(LVIM)和降阶微分变换法(RDTM)。建议的方法考虑使用合适的初始条件,并在没有任何离散化或限制传统的情况下找到解。此外,它们的解是快速收敛的级数形式,具有易于计算的项。通过四个数值应用的数值研究,证明了所建议方法的有效性和可靠性,并比较了它们之间的计算效率以及与现有文献中其他补充方法的计算效率。此外还探讨了改变分数阶导数参数时解的性质。数值结果验证了所提方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信