Components and singularities of Quot schemes and varieties of commuting matrices

IF 1.2 1区 数学 Q1 MATHEMATICS
Joachim Jelisiejew, Klemen Šivic
{"title":"Components and singularities of Quot schemes and varieties of commuting matrices","authors":"Joachim Jelisiejew, Klemen Šivic","doi":"10.1515/crelle-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the variety of commuting matrices. We classify its components for any number of matrices of size at most 7. We prove that starting from quadruples of 8×8{8\\times 8} matrices, this scheme has generically nonreduced components, while up to degree 7 it is generically reduced. Our approach is to recast the problem as deformations of modules and generalize an array of methods: apolarity, duality and Białynicki–Birula decompositions to this setup. We include a thorough review of our methods to make the paper self-contained and accessible to both algebraic and linear-algebraic communities. Our results give the corresponding statements for the Quot schemes of points, in particular we classify the components of Quotd⁡(𝒪𝔸n⊕r){\\operatorname{Quot}_{d}(\\mathcal{O}_{\\mathbb{A}^{n}}^{\\oplus r})} for d≤7{d\\leq 7} and all r, n.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"59 1","pages":"129 - 187"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract We investigate the variety of commuting matrices. We classify its components for any number of matrices of size at most 7. We prove that starting from quadruples of 8×8{8\times 8} matrices, this scheme has generically nonreduced components, while up to degree 7 it is generically reduced. Our approach is to recast the problem as deformations of modules and generalize an array of methods: apolarity, duality and Białynicki–Birula decompositions to this setup. We include a thorough review of our methods to make the paper self-contained and accessible to both algebraic and linear-algebraic communities. Our results give the corresponding statements for the Quot schemes of points, in particular we classify the components of Quotd⁡(𝒪𝔸n⊕r){\operatorname{Quot}_{d}(\mathcal{O}_{\mathbb{A}^{n}}^{\oplus r})} for d≤7{d\leq 7} and all r, n.
可交换矩阵的“格式”和“变体”的分量和奇异性
摘要研究可交换矩阵的多样性。我们对任意数目的矩阵的分量进行分类,矩阵的大小不超过7。从8×88 {\times 8矩阵的四元组出发,}证明了该方案具有一般非约化分量,而在7次以前是一般约化的。我们的方法是将问题重新定义为模块的变形,并将一系列方法:极性,对偶性和Białynicki-Birula分解推广到此设置。我们包括我们的方法进行彻底的审查,使论文自包含和可访问的代数和线性代数社区。我们的结果给出了点的“格式”的相应表述,特别是我们分类了d≤7d {\leq}{ 7和所有r, n时的Quotd (δ𝔸n⊕r) }{{}}{}{\operatorname{Quot}}{ _d(}{\mathcal{O}}{}{{\mathbb{A}}{ _ }{{}}}{n^ }{}{{\oplus}{ ^}}{ r})的分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信