Top-Down Mining of Interesting Patterns from Very High Dimensional Data

Hongyan Liu, Jiawei Han, Dong Xin, Zheng Shao
{"title":"Top-Down Mining of Interesting Patterns from Very High Dimensional Data","authors":"Hongyan Liu, Jiawei Han, Dong Xin, Zheng Shao","doi":"10.1109/ICDE.2006.161","DOIUrl":null,"url":null,"abstract":"Many real world applications deal with transactional data, characterized by a huge number of transactions (tuples) with a small number of dimensions (attributes). However, there are some other applications that involve rather high dimensional data with a small number of tuples. Examples of such applications include bioinformatics, survey-based statistical analysis, text processing, and so on. High dimensional data pose great challenges to most existing data mining algorithms. Although there are numerous algorithms dealing with transactional data sets, there are few algorithms oriented to very high dimensional data sets with a relatively small number of tuples.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"411 1","pages":"114-114"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Many real world applications deal with transactional data, characterized by a huge number of transactions (tuples) with a small number of dimensions (attributes). However, there are some other applications that involve rather high dimensional data with a small number of tuples. Examples of such applications include bioinformatics, survey-based statistical analysis, text processing, and so on. High dimensional data pose great challenges to most existing data mining algorithms. Although there are numerous algorithms dealing with transactional data sets, there are few algorithms oriented to very high dimensional data sets with a relatively small number of tuples.
从高维数据中自顶向下挖掘有趣模式
许多现实世界的应用程序处理事务性数据,其特征是具有少量维度(属性)的大量事务(元组)。但是,还有一些其他应用程序涉及到具有少量元组的高维数据。这类应用的例子包括生物信息学、基于调查的统计分析、文本处理等等。高维数据对现有的数据挖掘算法提出了很大的挑战。尽管有许多处理事务性数据集的算法,但很少有算法面向具有相对少量元组的高维数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信