Algoritmo para mapeamento dos usos do solo e cobertura vegetal a partir do uso do NDVI: um estudo aplicado no nordeste de Mato Grosso Do Sul

José Roberto Mantovani, L. Lelis
{"title":"Algoritmo para mapeamento dos usos do solo e cobertura vegetal a partir do uso do NDVI: um estudo aplicado no nordeste de Mato Grosso Do Sul","authors":"José Roberto Mantovani, L. Lelis","doi":"10.46551/rc24482692202317","DOIUrl":null,"url":null,"abstract":"Propõe-se uma metodologia que utiliza conceitos matemáticos da teoria de formação de clusters, o K-means, para obter de forma automática os clusters dos valores do NDVI. As implementações do método K-means existentes em softwares específicos exige a predefinição no número de clusters, sendo a contribuição desta metodologia a determinação do número de clusters automaticamente, sem a necessidade da interferência do tomador de decisões que, pode variar de acordo com o tempo e o espaço de uma imagem para outra, bem como de um sensor para o outro. Foram selecionados diferentes sensores para generalizar essa classificação do índice: Thematic Mapper (TM) a bordo do satélite Landsat-5; Operational Terra Imager (OLI) a bordo do satélite Landsat-8; MultiSpectral Instrument (MSI) a bordo do satélite Sentinel, nível-2A. O mapeamento e a validação do algoritmo são efetuados na região nordeste do estado de Mato Grosso do Sul, a qual, apresenta ao longo de 37 anos (1984- 2021) alterações em sua cobertura vegetal. Os resultados para os três períodos, fornecidos pelo algoritmo distinguiu melhor o comportamento espectral dos pixels referentes às classes de água, solo exposto e áreas urbanas; já o JENKS generalizou essas classes, por outro lado, distinguiu com melhor precisão vegetação de baixo porte, vegetação natural e florestas plantadas.","PeriodicalId":31616,"journal":{"name":"Revista Cerrados","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Cerrados","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46551/rc24482692202317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Propõe-se uma metodologia que utiliza conceitos matemáticos da teoria de formação de clusters, o K-means, para obter de forma automática os clusters dos valores do NDVI. As implementações do método K-means existentes em softwares específicos exige a predefinição no número de clusters, sendo a contribuição desta metodologia a determinação do número de clusters automaticamente, sem a necessidade da interferência do tomador de decisões que, pode variar de acordo com o tempo e o espaço de uma imagem para outra, bem como de um sensor para o outro. Foram selecionados diferentes sensores para generalizar essa classificação do índice: Thematic Mapper (TM) a bordo do satélite Landsat-5; Operational Terra Imager (OLI) a bordo do satélite Landsat-8; MultiSpectral Instrument (MSI) a bordo do satélite Sentinel, nível-2A. O mapeamento e a validação do algoritmo são efetuados na região nordeste do estado de Mato Grosso do Sul, a qual, apresenta ao longo de 37 anos (1984- 2021) alterações em sua cobertura vegetal. Os resultados para os três períodos, fornecidos pelo algoritmo distinguiu melhor o comportamento espectral dos pixels referentes às classes de água, solo exposto e áreas urbanas; já o JENKS generalizou essas classes, por outro lado, distinguiu com melhor precisão vegetação de baixo porte, vegetação natural e florestas plantadas.
提出了一种利用聚类理论的数学概念K-means自动获得NDVI值聚类的方法。K - means现有方法的软件实现的具体要求违约数量集群作为这种方法的贡献确定集群数量自然就不需要决策者的干扰,可以根据不同的时间和空间的一个图像到另一个,另一个传感器。选择了不同的传感器来推广这一索引分类:Landsat-5卫星上的专题制图仪(TM);Landsat-8卫星上的操作地球成像仪(OLI);多光谱仪器(MSI)在哨兵卫星上,2a级。该算法在南马托格罗索州东北部地区进行了测绘和验证,该地区的植被覆盖在37年(1984- 2021年)期间发生了变化。算法提供的三个时期的结果更好地区分了与水、暴露土壤和城市地区相关的像素的光谱行为;JENKS对这些类别进行了概括,另一方面,他更准确地区分了低矮植被、自然植被和人工林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
30
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信