Richard Rutledge, Sunjae Park, Haider Adnan Khan, A. Orso, Milos Prvulović, A. Zajić
{"title":"Zero-Overhead Path Prediction with Progressive Symbolic Execution","authors":"Richard Rutledge, Sunjae Park, Haider Adnan Khan, A. Orso, Milos Prvulović, A. Zajić","doi":"10.1109/ICSE.2019.00039","DOIUrl":null,"url":null,"abstract":"In previous work, we introduced zero-overhead profiling (ZOP), a technique that leverages the electromagnetic emissions generated by the computer hardware to profile a program without instrumenting it. Although effective, ZOP has several shortcomings: it requires test inputs that achieve extensive code coverage for its training phase; it predicts path profiles instead of complete execution traces; and its predictions can suffer unrecoverable accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during training through progressive symbolic execution (PSE)-symbolic execution of increasingly small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless approach that can recover from prediction errors. We evaluated our approach on a set of benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90% path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic execution, thus boosting ZOP-2's accuracy.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"14 1","pages":"234-245"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In previous work, we introduced zero-overhead profiling (ZOP), a technique that leverages the electromagnetic emissions generated by the computer hardware to profile a program without instrumenting it. Although effective, ZOP has several shortcomings: it requires test inputs that achieve extensive code coverage for its training phase; it predicts path profiles instead of complete execution traces; and its predictions can suffer unrecoverable accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during training through progressive symbolic execution (PSE)-symbolic execution of increasingly small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless approach that can recover from prediction errors. We evaluated our approach on a set of benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90% path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic execution, thus boosting ZOP-2's accuracy.