Magneto-hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Thermophoresis, Viscous Dissipation and Brownian Motion

Falana Ayodeji, Alegbeleye Tope, Olabanji Pele
{"title":"Magneto-hydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Thermophoresis, Viscous Dissipation and Brownian Motion","authors":"Falana Ayodeji, Alegbeleye Tope, Olabanji Pele","doi":"10.11648/J.MLR.20190404.12","DOIUrl":null,"url":null,"abstract":"The bioconvection Magneto-Hydrodynamics (MHD) flow of nanofluid over a stretching sheet with velocity slip and viscous dissipation is studied. The governing nonlinear partial differential equations of the flow are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformation. These coupled ordinary differential equations are solved using fourth order Runge Kutta-Fehlberg integration method along with shooting technique. Solutions showing the effects of pertinent parameters on the velocity temperature, nanoparticles concentration, skin friction, Nusselt number and microorganism density are illustrated graphically and discussed. It is observed that there is enhancement of the motile microorganism density as thermal slip and Eckert number increase but microorganism density slip parameter have the opposite effect on the microorganism density. It is also found that an increase in Lewis number results in reduction of the volume fraction of nanoparticles and concentration boundary-layer thickness. Brownian motion, Nb and Eckert number, Ec decrease both local Nusselt number and local motile microorganism density but increases local Sherwood number. In addition, as the values of radiation parameter R increase, the thermal boundary layer thickness increases. Finally, thermophoresis parameter, Nt decreases both local Sherwood number, local Nuseselt number and local motile microorganism density. Comparisons of the present result with the previously published results show good agreement.","PeriodicalId":75238,"journal":{"name":"Transactions on machine learning research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MLR.20190404.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The bioconvection Magneto-Hydrodynamics (MHD) flow of nanofluid over a stretching sheet with velocity slip and viscous dissipation is studied. The governing nonlinear partial differential equations of the flow are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformation. These coupled ordinary differential equations are solved using fourth order Runge Kutta-Fehlberg integration method along with shooting technique. Solutions showing the effects of pertinent parameters on the velocity temperature, nanoparticles concentration, skin friction, Nusselt number and microorganism density are illustrated graphically and discussed. It is observed that there is enhancement of the motile microorganism density as thermal slip and Eckert number increase but microorganism density slip parameter have the opposite effect on the microorganism density. It is also found that an increase in Lewis number results in reduction of the volume fraction of nanoparticles and concentration boundary-layer thickness. Brownian motion, Nb and Eckert number, Ec decrease both local Nusselt number and local motile microorganism density but increases local Sherwood number. In addition, as the values of radiation parameter R increase, the thermal boundary layer thickness increases. Finally, thermophoresis parameter, Nt decreases both local Sherwood number, local Nuseselt number and local motile microorganism density. Comparisons of the present result with the previously published results show good agreement.
磁流体力学(MHD)生物对流纳米流体在具有热泳、粘性耗散和布朗运动的拉伸片上的滑动流动
研究了纳米流体在具有速度滑移和粘性耗散的拉伸薄片上的生物对流磁流体动力学(MHD)流动。利用相似变换将控制流动的非线性偏微分方程转化为耦合的非线性常微分方程组。采用四阶Runge - Kutta-Fehlberg积分法结合射击技术求解了这些耦合常微分方程。给出了相关参数对速度、温度、纳米颗粒浓度、表面摩擦、努塞尔数和微生物密度的影响解法,并进行了讨论。结果表明,随着热滑移和Eckert数的增加,流动微生物密度增大,但微生物密度滑移参数对微生物密度的影响相反。研究还发现,随着路易斯数的增加,纳米颗粒的体积分数和浓度边界层厚度都有所降低。布朗运动、Nb和Eckert数、Ec均降低了局部努塞尔数和局部运动微生物密度,但增加了局部舍伍德数。另外,随着辐射参数R的增大,热边界层厚度增大。最后,热泳参数Nt降低了局部Sherwood数、局部Nuseselt数和局部活动微生物密度。将目前的结果与以前发表的结果进行比较,结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信