On Z2k-Dual Binary Codes

D. Krotov
{"title":"On Z2k-Dual Binary Codes","authors":"D. Krotov","doi":"10.1109/TIT.2007.892787","DOIUrl":null,"url":null,"abstract":"A new generalization of the Gray map is introduced. The new generalization Phi:Z2 kn rarr Z2 2k-1n is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z2 k-codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2 k-linear Hadamard codes and co-Z2 k-linear extended 1-perfect codes are described, where co-Z2 k-linearity means that the code can be obtained from a linear Z2 k-code with the help of the new generalized Gray map","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"46 3 1","pages":"1532-1537"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2007.892787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

A new generalization of the Gray map is introduced. The new generalization Phi:Z2 kn rarr Z2 2k-1n is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z2 k-codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2 k-linear Hadamard codes and co-Z2 k-linear extended 1-perfect codes are described, where co-Z2 k-linearity means that the code can be obtained from a linear Z2 k-code with the help of the new generalized Gray map
关于z2k -双二进制码
介绍了一种新的灰度图的概化方法。将新的推广Phi:Z2 kn rarr Z2 2k-1n与已知的广义Gray映射Phi联系起来:取两个对偶线性Z2 k码,利用Gray映射的推广Phi和Phi构造二进制码,则得到的二进制码的权数满足MacWilliams恒等式。描述了Z2 k-线性Hadamard码和co-Z2 k-线性扩展1-完美码的分类,其中co-Z2 k-线性意味着该码可以借助新的广义Gray映射从线性Z2 k-码中得到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信