Short term load forecast based on time series analysis: A case study

S. Dodamani, Vinay J Shetty, R. Magadum
{"title":"Short term load forecast based on time series analysis: A case study","authors":"S. Dodamani, Vinay J Shetty, R. Magadum","doi":"10.1109/TAPENERGY.2015.7229635","DOIUrl":null,"url":null,"abstract":"Short term load forecasting plays a vital role in the daily generation, efficient power system planning, unit maintenance, determining unit commitment and secured power system operation. There are number of approaches for short term load forecasting but it is observed that time series approach is most feasible and provides more reasonable accurate forecast. The present paper discuses the Autoregressive (AR) approach of time series analysis for short term load forecast for Tamilnadu (India) load data. The time series Autoregressive gives better forecasting results for 4 to 6 Hours ahead.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"37 1","pages":"299-303"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Short term load forecasting plays a vital role in the daily generation, efficient power system planning, unit maintenance, determining unit commitment and secured power system operation. There are number of approaches for short term load forecasting but it is observed that time series approach is most feasible and provides more reasonable accurate forecast. The present paper discuses the Autoregressive (AR) approach of time series analysis for short term load forecast for Tamilnadu (India) load data. The time series Autoregressive gives better forecasting results for 4 to 6 Hours ahead.
基于时间序列分析的短期负荷预测:一个案例研究
短期负荷预测在日常发电、高效规划电力系统、机组维护、确定机组投入、保障电力系统运行等方面发挥着重要作用。短期负荷预测方法有很多,但时间序列预测方法最可行,预测结果更合理准确。本文讨论了印度泰米尔纳德邦负荷数据短期负荷预测的自回归时间序列分析方法。时间序列自回归对未来4 ~ 6小时的预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信