Adsorption of Sr(II) cations onto titanium dioxide, doped with Boron atoms

IF 0.9 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Mironyuk, H. Vasylyeva, Iryna Prokipchuk, I. Mykytyn
{"title":"Adsorption of Sr(II) cations onto titanium dioxide, doped with Boron atoms","authors":"I. Mironyuk, H. Vasylyeva, Iryna Prokipchuk, I. Mykytyn","doi":"10.15330/pcss.24.1.114-125","DOIUrl":null,"url":null,"abstract":"The adsorption of Sr(II) cations by Boron-doped TiO2 was investigated.  The adsorbent samples were obtained by liquid-phase sol-gel method using the aqua complex precursor [Ті(ОН2)6]3+‧3Cl- and modifying reagent hydrogen borate Н3ВО3. It was found, that single-phase rutile titanium dioxide or two-phase anatase-rutile oxide materials were formed under the different initial ratios of components. Boron atoms are combined with Oxygen atoms into triangular structural cell ВО3 in the rutile sample 0.5В-ТіО2 and are localized in the surface layer of the nanoparticle material as a grouping =О2ВОН. The introduction of Boron atoms into the structure of the rutile adsorbent causes an increase in its adsorption capacity for the binding of Sr(II) cations in the aqueous electrolyte. The maximal adsorption values for Sr(II) cations by the rutile adsorbent in a neutral electrolyte environment reach 102.3 mg‧g-1, while it is equal to 68.8 mg‧g-1 for the unmodified anatase adsorbent a-TiO2. \nThe number of acid adsorption centers ≡ТіОНδ+ on the surface of the rutile adsorbent 0.5В-ТіО2 is ~ 50 units on a surface area of 10 nm2, which is twice the number of centers on the surface of the anatase adsorbent a- ТіО2. Anatase-rutile adsorbents 1.0В-ТіО2 and 1.5В-ТіО2 contain, respectively, 70% and 57% of the anatase phase. They are significantly inferior in adsorption ability toward cations of Sr(II) compared with the rutile adsorbent 0.5В-ТіО2. This is because Boron atoms are mainly localized in the anatase phase and with oxygen atoms form tetrahedral groups of ВО4-. ","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.1.114-125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The adsorption of Sr(II) cations by Boron-doped TiO2 was investigated.  The adsorbent samples were obtained by liquid-phase sol-gel method using the aqua complex precursor [Ті(ОН2)6]3+‧3Cl- and modifying reagent hydrogen borate Н3ВО3. It was found, that single-phase rutile titanium dioxide or two-phase anatase-rutile oxide materials were formed under the different initial ratios of components. Boron atoms are combined with Oxygen atoms into triangular structural cell ВО3 in the rutile sample 0.5В-ТіО2 and are localized in the surface layer of the nanoparticle material as a grouping =О2ВОН. The introduction of Boron atoms into the structure of the rutile adsorbent causes an increase in its adsorption capacity for the binding of Sr(II) cations in the aqueous electrolyte. The maximal adsorption values for Sr(II) cations by the rutile adsorbent in a neutral electrolyte environment reach 102.3 mg‧g-1, while it is equal to 68.8 mg‧g-1 for the unmodified anatase adsorbent a-TiO2. The number of acid adsorption centers ≡ТіОНδ+ on the surface of the rutile adsorbent 0.5В-ТіО2 is ~ 50 units on a surface area of 10 nm2, which is twice the number of centers on the surface of the anatase adsorbent a- ТіО2. Anatase-rutile adsorbents 1.0В-ТіО2 and 1.5В-ТіО2 contain, respectively, 70% and 57% of the anatase phase. They are significantly inferior in adsorption ability toward cations of Sr(II) compared with the rutile adsorbent 0.5В-ТіО2. This is because Boron atoms are mainly localized in the anatase phase and with oxygen atoms form tetrahedral groups of ВО4-. 
掺杂硼原子的二氧化钛对Sr(II)阳离子的吸附
研究了硼掺杂TiO2对Sr(II)阳离子的吸附。以水络合前驱体[Ті(ОН2)6]3+·3Cl-和改性剂硼酸氢Н3ВО3为原料,采用液相溶胶-凝胶法制备吸附剂样品。结果表明,在不同组分的初始配比下,可形成单相金红石型二氧化钛或两相锐钛-氧化金红石型材料。在金红石样品0.5В-ТіО2中,硼原子与氧原子结合形成三角形结构细胞ВО3,并以分组形式定位在纳米颗粒材料的表层=О2ВОН。在金红石吸附剂的结构中引入硼原子,使其对水电解质中Sr(II)阳离子结合的吸附能力增加。在中性电解质环境下,金红石吸附剂对Sr(II)阳离子的最大吸附值为102.3 mg·g-1,而未经改性的锐钛矿吸附剂a- tio2的最大吸附值为68.8 mg·g-1。金红石吸附剂0.5В-ТіО2表面的酸吸附中心数≡ТіОНδ+在10 nm2的表面积上为~ 50个单位,是锐钛矿吸附剂a- ТіО2表面的酸吸附中心数的两倍。锐钛矿-金红石吸附剂1.0В-ТіО2和1.5В-ТіО2分别含有70%和57%的锐钛矿相。与金红石吸附剂0.5В-ТіО2相比,它们对Sr(II)阳离子的吸附能力明显较差。这是因为硼原子主要集中在锐钛矿相,并与氧原子形成ВО4-的四面体基团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
83
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信