Explainability Methods for Identifying Root-Cause of SLA Violation Prediction in 5G Network

Ahmad Terra, R. Inam, Sandhya Baskaran, Pedro Batista, Ian Burdick, E. Fersman
{"title":"Explainability Methods for Identifying Root-Cause of SLA Violation Prediction in 5G Network","authors":"Ahmad Terra, R. Inam, Sandhya Baskaran, Pedro Batista, Ian Burdick, E. Fersman","doi":"10.1109/GLOBECOM42002.2020.9322496","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is implemented in various applications of telecommunication domain, ranging from managing the network, controlling a specific hardware function, preventing a failure, or troubleshooting a problem till automating the network slice management in 5G. The greater levels of autonomy increase the need for explainability of the decisions made by AI so that humans can understand them (e.g. the underlying data evidence and causal reasoning) consequently enabling trust. This paper presents first, the application of multiple global and local explainability methods with the main purpose to analyze the root-cause of Service Level Agreement violation prediction in a 5G network slicing setup by identifying important features contributing to the decision. Second, it performs a comparative analysis of the applied methods to analyze explainability of the predicted violation. Further, the global explainability results are validated using statistical Causal Dataframe method in order to improve the identified cause of the problem and thus validating the explainability.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"10 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Artificial Intelligence (AI) is implemented in various applications of telecommunication domain, ranging from managing the network, controlling a specific hardware function, preventing a failure, or troubleshooting a problem till automating the network slice management in 5G. The greater levels of autonomy increase the need for explainability of the decisions made by AI so that humans can understand them (e.g. the underlying data evidence and causal reasoning) consequently enabling trust. This paper presents first, the application of multiple global and local explainability methods with the main purpose to analyze the root-cause of Service Level Agreement violation prediction in a 5G network slicing setup by identifying important features contributing to the decision. Second, it performs a comparative analysis of the applied methods to analyze explainability of the predicted violation. Further, the global explainability results are validated using statistical Causal Dataframe method in order to improve the identified cause of the problem and thus validating the explainability.
5G网络SLA违规预测根源识别的可解释性方法
人工智能(AI)在电信领域的各种应用中实现,从管理网络,控制特定硬件功能,防止故障或排除问题,直到5G中的网络切片管理自动化。更高水平的自主性增加了对人工智能决策的可解释性的需求,以便人类能够理解它们(例如底层数据证据和因果推理),从而实现信任。本文首先提出了多种全局和局部可解释性方法的应用,主要目的是通过识别有助于决策的重要特征来分析5G网络切片设置中服务水平协议违反预测的根本原因。其次,对分析预测违章可解释性的常用方法进行了比较分析。进一步,使用统计因果数据框架方法对全局可解释性结果进行验证,以改进问题的原因识别,从而验证可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信