{"title":"On the commutator in Leibniz algebras","authors":"A. Dzhumadil'daev, N. Ismailov, B. Sartayev","doi":"10.1142/s0218196722500333","DOIUrl":null,"url":null,"abstract":"We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil’daev in [A. S. Dzhumadil’daev, [Formula: see text]-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415–440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil’daev in [A. S. Dzhumadil’daev, [Formula: see text]-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415–440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.