{"title":"Fabrication and Properties of Electrospun PAN/LA–SA/TiO2 Composite Phase Change Fiber","authors":"G. Ke, Xin Wang, J. Pei","doi":"10.1080/03602559.2017.1370101","DOIUrl":null,"url":null,"abstract":"ABSTRACT A stabilized matrix to accommodate phase change materials is essential in the application and functioning of phase change materials. In this study, lauric–stearic acid eutectics and TiO2 were doped with polyacrylonitrile solution to electrospin a composite phase change nanofibers. The surface morphology indicated typical nanofibrous structure of polyacrylonitrile/lauric–stearic/TiO2 composite nanofibers, and the diameter of fiber increased with the increase in lauric–stearic eutectic mass ratio. Differential scanning calorimetry analysis showed the temperature of melting peak of polyacrylonitrile/lauric–stearic/TiO2 nanofiber was around 25°C, which was lower than that of pure lauric–stearic eutectics. Latent heat value of the composite fibers gradually increased with the increase in lauric–stearic mass ratio. Thermal cycle test and thermogravimetric analysis showed that polyacrylonitrile/lauric–stearic/TiO2 composite fibers were reversible thermal energy storage materials with good thermal stability below 100°C. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"9 1","pages":"958 - 964"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1370101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 10
Abstract
ABSTRACT A stabilized matrix to accommodate phase change materials is essential in the application and functioning of phase change materials. In this study, lauric–stearic acid eutectics and TiO2 were doped with polyacrylonitrile solution to electrospin a composite phase change nanofibers. The surface morphology indicated typical nanofibrous structure of polyacrylonitrile/lauric–stearic/TiO2 composite nanofibers, and the diameter of fiber increased with the increase in lauric–stearic eutectic mass ratio. Differential scanning calorimetry analysis showed the temperature of melting peak of polyacrylonitrile/lauric–stearic/TiO2 nanofiber was around 25°C, which was lower than that of pure lauric–stearic eutectics. Latent heat value of the composite fibers gradually increased with the increase in lauric–stearic mass ratio. Thermal cycle test and thermogravimetric analysis showed that polyacrylonitrile/lauric–stearic/TiO2 composite fibers were reversible thermal energy storage materials with good thermal stability below 100°C. GRAPHICAL ABSTRACT