{"title":"Detection and Segmentation of 2D Curved Reflection Symmetric Structures","authors":"C. L. Teo, C. Fermüller, Y. Aloimonos","doi":"10.1109/ICCV.2015.192","DOIUrl":null,"url":null,"abstract":"Symmetry, as one of the key components of Gestalt theory, provides an important mid-level cue that serves as input to higher visual processes such as segmentation. In this work, we propose a complete approach that links the detection of curved reflection symmetries to produce symmetry-constrained segments of structures/regions in real images with clutter. For curved reflection symmetry detection, we leverage on patch-based symmetric features to train a Structured Random Forest classifier that detects multiscaled curved symmetries in 2D images. Next, using these curved symmetries, we modulate a novel symmetry-constrained foreground-background segmentation by their symmetry scores so that we enforce global symmetrical consistency in the final segmentation. This is achieved by imposing a pairwise symmetry prior that encourages symmetric pixels to have the same labels over a MRF-based representation of the input image edges, and the final segmentation is obtained via graph-cuts. Experimental results over four publicly available datasets containing annotated symmetric structures: 1) SYMMAX-300 [38], 2) BSD-Parts, 3) Weizmann Horse (both from [18]) and 4) NY-roads [35] demonstrate the approach's applicability to different environments with state-of-the-art performance.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"40 1","pages":"1644-1652"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Symmetry, as one of the key components of Gestalt theory, provides an important mid-level cue that serves as input to higher visual processes such as segmentation. In this work, we propose a complete approach that links the detection of curved reflection symmetries to produce symmetry-constrained segments of structures/regions in real images with clutter. For curved reflection symmetry detection, we leverage on patch-based symmetric features to train a Structured Random Forest classifier that detects multiscaled curved symmetries in 2D images. Next, using these curved symmetries, we modulate a novel symmetry-constrained foreground-background segmentation by their symmetry scores so that we enforce global symmetrical consistency in the final segmentation. This is achieved by imposing a pairwise symmetry prior that encourages symmetric pixels to have the same labels over a MRF-based representation of the input image edges, and the final segmentation is obtained via graph-cuts. Experimental results over four publicly available datasets containing annotated symmetric structures: 1) SYMMAX-300 [38], 2) BSD-Parts, 3) Weizmann Horse (both from [18]) and 4) NY-roads [35] demonstrate the approach's applicability to different environments with state-of-the-art performance.