Object detection using adaptive block-based background model

W. Tsai, Jian-Hui Chen, M. Sheu, Chi-Chia Sun
{"title":"Object detection using adaptive block-based background model","authors":"W. Tsai, Jian-Hui Chen, M. Sheu, Chi-Chia Sun","doi":"10.1109/ICCE-TW.2016.7520910","DOIUrl":null,"url":null,"abstract":"This paper propose an adaptable block-based background modeling and real time image object detection algorithm. In training step, we present adaptable block-based background model that uses major color number to determine the block size. This background model can reduce the memory consumption, efficiently. In detection step, we use one pixel to compare with background model. Then, it can reduce processing time. The experiment results show that we can save 33.9% memory space. Finally, we can achieve 27.25 frames per second for the benchmark video with image size 768×576.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"39 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper propose an adaptable block-based background modeling and real time image object detection algorithm. In training step, we present adaptable block-based background model that uses major color number to determine the block size. This background model can reduce the memory consumption, efficiently. In detection step, we use one pixel to compare with background model. Then, it can reduce processing time. The experiment results show that we can save 33.9% memory space. Finally, we can achieve 27.25 frames per second for the benchmark video with image size 768×576.
基于自适应块背景模型的目标检测
本文提出了一种自适应的基于分块的背景建模和实时图像目标检测算法。在训练步骤中,我们提出了基于自适应块的背景模型,该模型使用主色数来确定块的大小。这种后台模式可以有效地减少内存的消耗。在检测步骤中,我们使用一个像素与背景模型进行比较。然后,它可以减少处理时间。实验结果表明,我们可以节省33.9%的内存空间。最后,对于图像大小为768×576的基准视频,我们可以达到每秒27.25帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信