Lower Bounds on the Size of Semidefinite Programming Relaxations

James R. Lee, P. Raghavendra, David Steurer
{"title":"Lower Bounds on the Size of Semidefinite Programming Relaxations","authors":"James R. Lee, P. Raghavendra, David Steurer","doi":"10.1145/2746539.2746599","DOIUrl":null,"url":null,"abstract":"We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on n-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nδ, for some constant δ > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for max-sat.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

Abstract

We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on n-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nδ, for some constant δ > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for max-sat.
半定规划松弛大小的下界
介绍了一种证明组合问题半定规划松弛有效性下界的方法。特别地,我们证明了n顶点图上的切多面体、TSP多面体和稳定集多面体不是任何小于2nδ维数的SDP(即任何谱面体)可行域的线性像,对于某些常数δ > 0。这一结果给出了任何显族多面体的半定扩展复杂度的第一个超多项式下界。我们的结果来自于证明矩阵正半定秩下界的一般技术。为此,我们建立了任意SDP和由平方和SDP层次产生的SDP之间的密切联系。对于逼近最大约束满足问题,我们证明了多项式大小的sdp与由o(1)次平方和松弛引起的sdp在幂次上是相等的。这个结果意味着,例如,没有一个多项式大小的SDP松弛族可以获得比max-sat的7/8近似更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信