Generation of 12-Lead Electrocardiogram with Subject-Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder

Yuling Sang, M. Beetz, V. Grau
{"title":"Generation of 12-Lead Electrocardiogram with Subject-Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder","authors":"Yuling Sang, M. Beetz, V. Grau","doi":"10.1109/ISBI52829.2022.9761431","DOIUrl":null,"url":null,"abstract":"Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE) to automatically generate realistic 12-lead ECG signals. Our method differs from previous papers in that (i) it generates complete 12-lead studies and (ii) generated ECGs can be adjusted to correspond to specific subject characteristics, particularly those from images. We demonstrate the ability of the model to adjust to age, sex and Body Mass Index (BMI) values. Our model is the first to incorporate imaging information by including heart position and orientation as input conditions, to analyse anatomical influences on generated ECG morphology. The network shows high accuracy and sensitivity to different conditions. In addition, our method can extract a ten-dimensional latent space containing interpreted features of the 12 ECG leads, which correspond to interpretable ECG features.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"68 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Deep learning models have proven their value in the analysis of electrocardiogram (ECG). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE) to automatically generate realistic 12-lead ECG signals. Our method differs from previous papers in that (i) it generates complete 12-lead studies and (ii) generated ECGs can be adjusted to correspond to specific subject characteristics, particularly those from images. We demonstrate the ability of the model to adjust to age, sex and Body Mass Index (BMI) values. Our model is the first to incorporate imaging information by including heart position and orientation as input conditions, to analyse anatomical influences on generated ECG morphology. The network shows high accuracy and sensitivity to different conditions. In addition, our method can extract a ten-dimensional latent space containing interpreted features of the 12 ECG leads, which correspond to interpretable ECG features.
使用条件变分自编码器生成具有受试者特定图像衍生特征的12导联心电图
深度学习模型已经证明了其在心电图分析中的价值。其中,深度生成模型在心电生成中已经显示出了自己的能力。本文提出了一种条件变分自编码器(cVAE)来自动生成真实的12导联心电信号。我们的方法与以前的论文不同之处在于:(i)它生成了完整的12导联研究,(ii)生成的心电图可以根据特定的受试者特征进行调整,特别是来自图像的特征。我们证明了模型的能力,以调整年龄,性别和身体质量指数(BMI)值。我们的模型是第一个通过将心脏位置和方向作为输入条件来整合成像信息的模型,以分析对生成的ECG形态的解剖影响。该网络对不同条件具有较高的精度和灵敏度。此外,我们的方法可以提取包含12个心电导联可解释特征的十维潜在空间,这些特征对应于可解释的心电特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信