Return probability and self-similarity of the Riesz walk

Ryota Hanaoka, N. Konno
{"title":"Return probability and self-similarity of the Riesz walk","authors":"Ryota Hanaoka, N. Konno","doi":"10.26421/QIC21.5-6-5","DOIUrl":null,"url":null,"abstract":"The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"1 1","pages":"409-422"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.5-6-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.
Riesz步行的返回概率和自相似度
量子行走是随机行走的对应。一维双态量子游走可以通过复平面上单位圆的测量来确定。对于奇异连续测度,相应的量子行走的结果是有限的。在这种情况下,我们关注量子漫步,称为Riesz漫步,由Riesz测度给出,Riesz测度是著名的奇异连续测度之一。本文致力于研究Riesz行走的返回概率。此外,我们对行走的自相似性提出了一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信