Transient electromagnetic modeling using recurrent neural networks

H. Sharma, Q. Zhang
{"title":"Transient electromagnetic modeling using recurrent neural networks","authors":"H. Sharma, Q. Zhang","doi":"10.1109/MWSYM.2005.1517009","DOIUrl":null,"url":null,"abstract":"A novel technique for modeling the behaviour of two port passive electromagnetic (EM) structures with respect to geometrical and material parameters is introduced. A direct time domain (TD) formulation is proposed that utilizes transient responses of the structure to applied excitation signals as training data for recurrent neural networks (RNN). These EM responses are obtainable from TD EM simulators. Once trained, the RNN macromodel can be inserted into circuit simulators for use in circuit analysis. The RNN macromodel is demonstrated with two examples.","PeriodicalId":13133,"journal":{"name":"IEEE MTT-S International Microwave Symposium Digest, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MTT-S International Microwave Symposium Digest, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2005.1517009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A novel technique for modeling the behaviour of two port passive electromagnetic (EM) structures with respect to geometrical and material parameters is introduced. A direct time domain (TD) formulation is proposed that utilizes transient responses of the structure to applied excitation signals as training data for recurrent neural networks (RNN). These EM responses are obtainable from TD EM simulators. Once trained, the RNN macromodel can be inserted into circuit simulators for use in circuit analysis. The RNN macromodel is demonstrated with two examples.
利用递归神经网络进行瞬变电磁建模
介绍了一种基于几何参数和材料参数的双端口无源电磁(EM)结构特性建模新技术。提出了一种直接时域(TD)公式,利用结构对外加激励信号的瞬态响应作为循环神经网络(RNN)的训练数据。这些电磁响应可以从TD电磁模拟器中获得。经过训练后,RNN宏模型可以插入电路模拟器中用于电路分析。通过两个实例对RNN宏模型进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信