{"title":"Forecasting Value at Risk and Expected Shortfall with Mixed Data Sampling","authors":"Trung H. Le","doi":"10.2139/ssrn.3509425","DOIUrl":null,"url":null,"abstract":"Abstract I propose applying the Mixed Data Sampling (MIDAS) framework to forecast Value at Risk (VaR) and Expected shortfall (ES). The new methods exploit the serial dependence on short-horizon returns to directly forecast the tail dynamics of the desired horizon. I perform a comprehensive comparison of out-of-sample VaR and ES forecasts with established models for a wide range of financial assets and backtests. The MIDAS-based models significantly outperform traditional GARCH-based forecasts and alternative conditional quantile specifications, especially in terms of multi-day forecast horizons. My analysis advocates models that feature asymmetric conditional quantiles and the use of the Asymmetric Laplace density to jointly estimate VaR and ES.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3509425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Abstract I propose applying the Mixed Data Sampling (MIDAS) framework to forecast Value at Risk (VaR) and Expected shortfall (ES). The new methods exploit the serial dependence on short-horizon returns to directly forecast the tail dynamics of the desired horizon. I perform a comprehensive comparison of out-of-sample VaR and ES forecasts with established models for a wide range of financial assets and backtests. The MIDAS-based models significantly outperform traditional GARCH-based forecasts and alternative conditional quantile specifications, especially in terms of multi-day forecast horizons. My analysis advocates models that feature asymmetric conditional quantiles and the use of the Asymmetric Laplace density to jointly estimate VaR and ES.