H. F. MacMillan, H. C. Hamaker, N. Kaminar, M. Kuryla, M. Ristow, D.D. Liu, G. Virshup, J. Gee
{"title":"28% efficient GaAs concentrator solar cells","authors":"H. F. MacMillan, H. C. Hamaker, N. Kaminar, M. Kuryla, M. Ristow, D.D. Liu, G. Virshup, J. Gee","doi":"10.1109/PVSC.1988.105745","DOIUrl":null,"url":null,"abstract":"AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27% at high solar concentrations (>400 suns, AM1.5D, 100 mW/cm/sup 2/) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1% around 400 suns, and the best p/n cell achieved an efficiency of 27.5% around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"1 1","pages":"462-468 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27% at high solar concentrations (>400 suns, AM1.5D, 100 mW/cm/sup 2/) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1% around 400 suns, and the best p/n cell achieved an efficiency of 27.5% around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.<>