Load forecasting assessment using SARIMA model and fuzzy inductive reasoning

N. G. Cabrera, G. Gutiérrez-Alcaraz, E. Gil
{"title":"Load forecasting assessment using SARIMA model and fuzzy inductive reasoning","authors":"N. G. Cabrera, G. Gutiérrez-Alcaraz, E. Gil","doi":"10.1109/IEEM.2013.6962474","DOIUrl":null,"url":null,"abstract":"Accurate load forecasting is critical for power systems planning, control, and operation. Poor forecasting in volatile power markets can have large, detrimental impacts on power system costs and real-time energy acquisition costs from distribution companies. This paper implements and compares two different methodologies for short term load forecasting: a classic statistical model (SARIMA model) and a model based on artificial intelligence (Fuzzy Inductive Reasoning, or FIR, model). A numerical example predicts one week for every methodology and the results are compared for both models.","PeriodicalId":6454,"journal":{"name":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"21 1","pages":"561-565"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2013.6962474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate load forecasting is critical for power systems planning, control, and operation. Poor forecasting in volatile power markets can have large, detrimental impacts on power system costs and real-time energy acquisition costs from distribution companies. This paper implements and compares two different methodologies for short term load forecasting: a classic statistical model (SARIMA model) and a model based on artificial intelligence (Fuzzy Inductive Reasoning, or FIR, model). A numerical example predicts one week for every methodology and the results are compared for both models.
基于SARIMA模型和模糊归纳推理的负荷预测评估
准确的负荷预测对电力系统的规划、控制和运行至关重要。在不稳定的电力市场中,糟糕的预测会对电力系统成本和配电公司的实时能源获取成本产生巨大的不利影响。本文实现并比较了两种不同的短期负荷预测方法:经典统计模型(SARIMA模型)和基于人工智能的模型(模糊归纳推理或FIR模型)。数值算例预测了每种方法的一周,并对两种模型的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信