L. Ambata, Isabel Angela P. del Castillo, Jeremiah Rod H. Jacinto, Cellix Mark T. Santos
{"title":"Public and Private Vehicle Quantification and Classification using Vehicle Detection and Recognition","authors":"L. Ambata, Isabel Angela P. del Castillo, Jeremiah Rod H. Jacinto, Cellix Mark T. Santos","doi":"10.1109/HNICEM48295.2019.9072836","DOIUrl":null,"url":null,"abstract":"Traffic congestion in the Philippines is diverse consisting public and private vehicles. One approach of this is to design a system that can count, detect, recognize, and classify public and private vehicles from a surveillance video. This research introduces the development of the said system, to be used as a statistical data for implementing traffic rules. The dataset the researchers used consists of 13,600 images: 10,880 images for training and 2,720 images for testing. These were obtained from a gas station video source, for the vehicles frequently passing though in a gas station. The researchers used an algorithm called Convolutional Neural Network for the detecting and classifying vehicles.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"15 5 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Traffic congestion in the Philippines is diverse consisting public and private vehicles. One approach of this is to design a system that can count, detect, recognize, and classify public and private vehicles from a surveillance video. This research introduces the development of the said system, to be used as a statistical data for implementing traffic rules. The dataset the researchers used consists of 13,600 images: 10,880 images for training and 2,720 images for testing. These were obtained from a gas station video source, for the vehicles frequently passing though in a gas station. The researchers used an algorithm called Convolutional Neural Network for the detecting and classifying vehicles.