Conversion of heavy gasoil into ultra-low sulfur and aromatic diesel over NiWRu/TiO2–γAl2O3 catalysts: Role of titanium and ruthenium on improving catalytic activity

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS
R. P. Silvy, S. K. Lageshetty
{"title":"Conversion of heavy gasoil into ultra-low sulfur and aromatic diesel over NiWRu/TiO2–γAl2O3 catalysts: Role of titanium and ruthenium on improving catalytic activity","authors":"R. P. Silvy, S. K. Lageshetty","doi":"10.2516/ogst/2020084","DOIUrl":null,"url":null,"abstract":"This contribution deals with about selective conversion of heavy gas oils into middle distillates fuels that meet ultra-low sulfur and aromatic compound quality standards by using a novel NiWRu/TiO2–γAl2O3 catalyst under typical hydrotreatment conditions. A diesel fuel fraction having sulfur, nitrogen and aromatics compound content of about 50 ppm, 10 ppm and 15 v%, respectively, was obtained when the reactor was operated at T = 370 °C, P = 12.4 MPa, LHSV = 0.5 h−1 and H2/hydrocarbon ratio = 800 Nm3/m3. Titanium and ruthenium additives used in the preparation of the NiWRu/TiO2–γAl2O3 catalyst, remarkably improved the catalytic activities for the hydrogenolysis, hydrogenation and hydrocracking reactions compared to the reference NiW/γAl2O3 catalyst. The coprecipitation of titanium and aluminum hydroxides produced a catalyst support having greater surface area, pore volume and surface acidity. An improvement in mechanical properties of the support extrudates was also observed. Characterization analysis by XPS, AUGER and XRD techniques of the TiO2–γAl2O3 support suggested the formation of an aluminum-titanate mixed phase (AlxTiyOz) having a non-well-defined stoichiometry. The NiW/TiO2–γAl2O3 and NiWRu/TiO2–γAl2O3 exhibited a greater surface dispersion of the supported nickel and tungsten species compared to the NiW/γAl2O3 catalyst. The promoter effect of ruthenium on the NiW bimetallic system caused a strong increase in both hydrogenolysis and hydrogenation reactions. Hydrodenitrogenation and hydrocracking reactions were also favored by the increase in the hydrogenation capacity and in the surface acidity of the catalyst. The highest conversion levels for all investigated reactions were obtained when the NiWRu/TiO2–γAl2O3 catalyst was prepared by co-impregnation of Ni and Ru in a second step. This catalyst showed sulfur tolerance properties when the reaction was conducted in the presence of different H2S partial pressures. The catalytic behavior of the NiWRu/TiO2–γAl2O3 catalyst was explained by the existence of a promoting effect between separated Ni and Ru sulfides species and the NiWS phase (dual mechanism).","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

This contribution deals with about selective conversion of heavy gas oils into middle distillates fuels that meet ultra-low sulfur and aromatic compound quality standards by using a novel NiWRu/TiO2–γAl2O3 catalyst under typical hydrotreatment conditions. A diesel fuel fraction having sulfur, nitrogen and aromatics compound content of about 50 ppm, 10 ppm and 15 v%, respectively, was obtained when the reactor was operated at T = 370 °C, P = 12.4 MPa, LHSV = 0.5 h−1 and H2/hydrocarbon ratio = 800 Nm3/m3. Titanium and ruthenium additives used in the preparation of the NiWRu/TiO2–γAl2O3 catalyst, remarkably improved the catalytic activities for the hydrogenolysis, hydrogenation and hydrocracking reactions compared to the reference NiW/γAl2O3 catalyst. The coprecipitation of titanium and aluminum hydroxides produced a catalyst support having greater surface area, pore volume and surface acidity. An improvement in mechanical properties of the support extrudates was also observed. Characterization analysis by XPS, AUGER and XRD techniques of the TiO2–γAl2O3 support suggested the formation of an aluminum-titanate mixed phase (AlxTiyOz) having a non-well-defined stoichiometry. The NiW/TiO2–γAl2O3 and NiWRu/TiO2–γAl2O3 exhibited a greater surface dispersion of the supported nickel and tungsten species compared to the NiW/γAl2O3 catalyst. The promoter effect of ruthenium on the NiW bimetallic system caused a strong increase in both hydrogenolysis and hydrogenation reactions. Hydrodenitrogenation and hydrocracking reactions were also favored by the increase in the hydrogenation capacity and in the surface acidity of the catalyst. The highest conversion levels for all investigated reactions were obtained when the NiWRu/TiO2–γAl2O3 catalyst was prepared by co-impregnation of Ni and Ru in a second step. This catalyst showed sulfur tolerance properties when the reaction was conducted in the presence of different H2S partial pressures. The catalytic behavior of the NiWRu/TiO2–γAl2O3 catalyst was explained by the existence of a promoting effect between separated Ni and Ru sulfides species and the NiWS phase (dual mechanism).
NiWRu/TiO2 - γ - al2o3催化剂催化重质柴油转化超低硫芳烃柴油:钛和钌对催化活性的影响
本文研究了在典型加氢处理条件下,采用新型NiWRu/TiO2 - γ - al2o3催化剂将重质气油选择性转化为满足超低硫和芳香族化合物质量标准的中间馏分油燃料。在温度= 370℃,温度= 12.4 MPa, LHSV = 0.5 h−1,H2/烃比= 800 Nm3/m3的条件下,柴油馏分硫、氮和芳烃含量分别为50 ppm、10 ppm和15 v%左右。制备的NiWRu/TiO2 -γAl2O3催化剂中添加钛和钌,与参考NiW/γAl2O3催化剂相比,显著提高了氢解、加氢和加氢裂化反应的催化活性。钛和铝氢氧化物的共沉淀产生了具有更大表面积、孔隙体积和表面酸度的催化剂载体。还观察到支撑挤出物的机械性能有所改善。通过XPS、AUGER和XRD对TiO2 - γ - al2o3载体进行表征分析,发现其形成了一种化学计量不明确的铝-钛酸盐混合相(AlxTiyOz)。与NiW/γ - al2o3催化剂相比,NiW/TiO2 - γ - al2o3催化剂和NiWRu/TiO2 - γ - al2o3催化剂表现出更大的负载镍和钨的表面分散性。钌对NiW双金属体系的促进剂作用使氢解反应和加氢反应均明显增加。加氢容量的增加和催化剂表面酸度的提高也有利于加氢脱氮和加氢裂化反应的发生。第二步共浸渍Ni和Ru制备NiWRu/TiO2 - γ - al2o3催化剂时,各反应的转化率最高。该催化剂在不同H2S分压条件下均表现出耐硫性能。NiWRu/TiO2 - γ - al2o3催化剂的催化行为可以解释为分离的Ni和Ru硫化物与NiWS相之间存在促进作用(双机制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信