A. Amer, M. Al-Wadi, Hanan Salem, A. Sajer, M. Al-Hajeri, A. Najem
{"title":"Geological Modelling of the Enjefa Beach Marginal Marine Outcrop; A Comparison Between Holocene and Cretaceous Tidal Channel Complexes","authors":"A. Amer, M. Al-Wadi, Hanan Salem, A. Sajer, M. Al-Hajeri, A. Najem","doi":"10.2118/194895-MS","DOIUrl":null,"url":null,"abstract":"\n Outcrop work represents the main source of analogs used to model subsurface reservoirs. Without such explanation of reservoir geometry, architecture, and characterization, producing subsurface formations would be largely uncertain. The aim of this paper is to build a geological static model for the Enjefa Beach outcrop exposed in Kuwait and use it to better understand subsurface reservoir architectures. This was achieved by acquiring several traverses along the outcrop, describing the various rock units, and understanding the depositional facies and facies associations. The next stage was to model each depositional unit as a separate zone embedded in an integrated model. This was followed by developing a forward synthetic three-dimensional seismic model to better understand how such reservoir architecture may appear in the subsurface. The final step was to use these findings in modeling a subsurface Cretaceous reservoir in northeastern Kuwait. The resultant model demonstrated that detailed geological complexities can be captured by conventional modeling techniques; in the model, the middle shoreface, upper shoreface, foreshore, and tidal channel complexes were statically modeled. Subsurface seismic data showed a series of highly sinuous meandering channels. Stacking patterns were found to vary among vertical, climbing, and compensational stacking patterns.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194895-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Outcrop work represents the main source of analogs used to model subsurface reservoirs. Without such explanation of reservoir geometry, architecture, and characterization, producing subsurface formations would be largely uncertain. The aim of this paper is to build a geological static model for the Enjefa Beach outcrop exposed in Kuwait and use it to better understand subsurface reservoir architectures. This was achieved by acquiring several traverses along the outcrop, describing the various rock units, and understanding the depositional facies and facies associations. The next stage was to model each depositional unit as a separate zone embedded in an integrated model. This was followed by developing a forward synthetic three-dimensional seismic model to better understand how such reservoir architecture may appear in the subsurface. The final step was to use these findings in modeling a subsurface Cretaceous reservoir in northeastern Kuwait. The resultant model demonstrated that detailed geological complexities can be captured by conventional modeling techniques; in the model, the middle shoreface, upper shoreface, foreshore, and tidal channel complexes were statically modeled. Subsurface seismic data showed a series of highly sinuous meandering channels. Stacking patterns were found to vary among vertical, climbing, and compensational stacking patterns.