{"title":"Task planning using physics-based heuristics on manipulation actions","authors":"Akbari Aliakbar, Muhayyuddin, J. Rosell","doi":"10.1109/ETFA.2016.7733599","DOIUrl":null,"url":null,"abstract":"In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"451 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.