{"title":"Robust Adaptive Beamforming based on Automatic Variable Loading in Array Antenna","authors":"Bin Yang, Wenxing Li, Yuanyuan Li, Y. Mao","doi":"10.47037/2021.aces.j.360713","DOIUrl":null,"url":null,"abstract":"Diagonal loading technology is widely used in array antenna beamforming because of its simple method, low computational complexity and the ability to improve the robustness of beamformer. On this basis, this paper proposes a robust adaptive beamforming \nmethod based on automatic variable loading technology. The automatic variable loading matrix (AVLM) of the method is composed of two parts. The non-uniform loading matrix dominants when the input signal-to-noise ratio (SNR) is small, effectively control the influence of noise disturbance without affecting the ability of array antenna to suppress interference. The variable diagonal loading matrix dominants when the input SNR is high\nto improve the output performance of array antenna. Simulated results show that compared to other methods, the proposed method has better output performance for\nboth low and high input SNR cases.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"176 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
Diagonal loading technology is widely used in array antenna beamforming because of its simple method, low computational complexity and the ability to improve the robustness of beamformer. On this basis, this paper proposes a robust adaptive beamforming
method based on automatic variable loading technology. The automatic variable loading matrix (AVLM) of the method is composed of two parts. The non-uniform loading matrix dominants when the input signal-to-noise ratio (SNR) is small, effectively control the influence of noise disturbance without affecting the ability of array antenna to suppress interference. The variable diagonal loading matrix dominants when the input SNR is high
to improve the output performance of array antenna. Simulated results show that compared to other methods, the proposed method has better output performance for
both low and high input SNR cases.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.