Quasi-local mass near the singularity, the event horizon and the null infinity of black hole spacetimes

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
N. Gudapati, S. Yau
{"title":"Quasi-local mass near the singularity, the event horizon and the null infinity of black hole spacetimes","authors":"N. Gudapati, S. Yau","doi":"10.4310/ATMP.2021.v25.n1.a3","DOIUrl":null,"url":null,"abstract":"The behaviour of geometric quantities close to geometric pathologies of a spacetime is relevant to deduce the physical behaviour of the system. In this work, we compute the quasi-local mass quantities - the Hawking mass, the Brown-York mass and the Liu-Yau mass in the maximal extensions of the spherically symmetric solutions of the Einstein equations inside the black hole region, at the singularity, the event horizon, and the null infinity, in the limiting sense of a geometric flow.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2021.v25.n1.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The behaviour of geometric quantities close to geometric pathologies of a spacetime is relevant to deduce the physical behaviour of the system. In this work, we compute the quasi-local mass quantities - the Hawking mass, the Brown-York mass and the Liu-Yau mass in the maximal extensions of the spherically symmetric solutions of the Einstein equations inside the black hole region, at the singularity, the event horizon, and the null infinity, in the limiting sense of a geometric flow.
黑洞时空的奇点、视界和零无穷附近的准局部质量
接近时空几何病态的几何量的行为与推断系统的物理行为有关。在这项工作中,我们在几何流的极限意义上计算了黑洞区域内爱因斯坦方程的球对称解的最大扩展中的准局部质量——霍金质量、布朗-约克质量和刘-丘质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信