Nonexistence of exact Lagrangian tori in affine conic bundles over $\mathbb{C}^n$

IF 0.6 3区 数学 Q3 MATHEMATICS
Yin Li
{"title":"Nonexistence of exact Lagrangian tori in affine conic bundles over $\\mathbb{C}^n$","authors":"Yin Li","doi":"10.4310/jsg.2022.v20.n5.a3","DOIUrl":null,"url":null,"abstract":"Let $M\\subset\\mathbb{C}^{n+1}$ be a smooth affine hypersurface defined by the equation $xy+p(z_1,\\cdots,z_{n-1})=1$, where $p$ is a Brieskorn-Pham polynomial and $n\\geq2$. We prove that if $L\\subset M$ is an orientable exact Lagrangian submanifold, then $L$ does not admit a Riemannian metric with non-positive sectional curvature. The key point of the proof is to establish a version of homological mirror symmetry for the wrapped Fukaya category of $M$, from which the finite-dimensionality of the symplectic cohomology group $\\mathit{SH}^0(M)$ follows by a Hochschild cohomology computation.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M\subset\mathbb{C}^{n+1}$ be a smooth affine hypersurface defined by the equation $xy+p(z_1,\cdots,z_{n-1})=1$, where $p$ is a Brieskorn-Pham polynomial and $n\geq2$. We prove that if $L\subset M$ is an orientable exact Lagrangian submanifold, then $L$ does not admit a Riemannian metric with non-positive sectional curvature. The key point of the proof is to establish a version of homological mirror symmetry for the wrapped Fukaya category of $M$, from which the finite-dimensionality of the symplectic cohomology group $\mathit{SH}^0(M)$ follows by a Hochschild cohomology computation.
$\mathbb{C}^n$上仿射二次束中的精确拉格朗日环面不存在性
设$M\subset\mathbb{C}^{n+1}$是由方程$xy+p(z_1,\cdots,z_{n-1})=1$定义的光滑仿射超曲面,其中$p$是Brieskorn-Pham多项式,$n\geq2$。证明了如果$L\subset M$是可定向的精确拉格朗日子流形,则$L$不允许非正截面曲率的黎曼度规。证明的关键是为$M$的包裹的Fukaya范畴建立了一个版本的同调镜像对称,从这个版本出发,辛上同群$\mathit{SH}^0(M)$的有限维性遵循一个Hochschild上同计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信