Nonexistence of exact Lagrangian tori in affine conic bundles over $\mathbb{C}^n$

Pub Date : 2021-04-20 DOI:10.4310/jsg.2022.v20.n5.a3
Yin Li
{"title":"Nonexistence of exact Lagrangian tori in affine conic bundles over $\\mathbb{C}^n$","authors":"Yin Li","doi":"10.4310/jsg.2022.v20.n5.a3","DOIUrl":null,"url":null,"abstract":"Let $M\\subset\\mathbb{C}^{n+1}$ be a smooth affine hypersurface defined by the equation $xy+p(z_1,\\cdots,z_{n-1})=1$, where $p$ is a Brieskorn-Pham polynomial and $n\\geq2$. We prove that if $L\\subset M$ is an orientable exact Lagrangian submanifold, then $L$ does not admit a Riemannian metric with non-positive sectional curvature. The key point of the proof is to establish a version of homological mirror symmetry for the wrapped Fukaya category of $M$, from which the finite-dimensionality of the symplectic cohomology group $\\mathit{SH}^0(M)$ follows by a Hochschild cohomology computation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n5.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M\subset\mathbb{C}^{n+1}$ be a smooth affine hypersurface defined by the equation $xy+p(z_1,\cdots,z_{n-1})=1$, where $p$ is a Brieskorn-Pham polynomial and $n\geq2$. We prove that if $L\subset M$ is an orientable exact Lagrangian submanifold, then $L$ does not admit a Riemannian metric with non-positive sectional curvature. The key point of the proof is to establish a version of homological mirror symmetry for the wrapped Fukaya category of $M$, from which the finite-dimensionality of the symplectic cohomology group $\mathit{SH}^0(M)$ follows by a Hochschild cohomology computation.
分享
查看原文
$\mathbb{C}^n$上仿射二次束中的精确拉格朗日环面不存在性
设$M\subset\mathbb{C}^{n+1}$是由方程$xy+p(z_1,\cdots,z_{n-1})=1$定义的光滑仿射超曲面,其中$p$是Brieskorn-Pham多项式,$n\geq2$。证明了如果$L\subset M$是可定向的精确拉格朗日子流形,则$L$不允许非正截面曲率的黎曼度规。证明的关键是为$M$的包裹的Fukaya范畴建立了一个版本的同调镜像对称,从这个版本出发,辛上同群$\mathit{SH}^0(M)$的有限维性遵循一个Hochschild上同计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信