Vision-based Autonomous Landing for Micro Aerial Vehicles on Targets Moving in 3D Space

Robson O. de Santana, L. Mozelli, A. A. Neto
{"title":"Vision-based Autonomous Landing for Micro Aerial Vehicles on Targets Moving in 3D Space","authors":"Robson O. de Santana, L. Mozelli, A. A. Neto","doi":"10.1109/ICAR46387.2019.8981643","DOIUrl":null,"url":null,"abstract":"A strategy for autonomous landing of Micro Aerial Vehicles (MAVs) on moving platforms is presented, based only on visual information from a monocular camera. The landing target is uniquely identified by previously known Augmented Reality (AR) markers, and its relative pose is estimated by visual servoing algorithms. Target trajectory in $\\mathbb{R}^{3}$ is composed of planar translation and vertical oscillation, simulating a vessel that travels in foul weather. The visual feedback helps the aerial robot to track this vessel, while a trajectory planning method, based on the system's model, allows predicting its future pose. Simulated results using the ROS framework are used to verify the effectiveness of our proposed method.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"27 1","pages":"541-546"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A strategy for autonomous landing of Micro Aerial Vehicles (MAVs) on moving platforms is presented, based only on visual information from a monocular camera. The landing target is uniquely identified by previously known Augmented Reality (AR) markers, and its relative pose is estimated by visual servoing algorithms. Target trajectory in $\mathbb{R}^{3}$ is composed of planar translation and vertical oscillation, simulating a vessel that travels in foul weather. The visual feedback helps the aerial robot to track this vessel, while a trajectory planning method, based on the system's model, allows predicting its future pose. Simulated results using the ROS framework are used to verify the effectiveness of our proposed method.
基于视觉的微型飞行器在三维空间运动目标上的自主降落
提出了一种基于单目摄像机视觉信息的移动平台上微型飞行器自主着陆策略。着陆目标由已知的增强现实(AR)标记唯一识别,其相对姿态由视觉伺服算法估计。$\mathbb{R}^{3}$中的目标轨迹由平面平移和垂直振荡组成,模拟在恶劣天气下航行的船只。视觉反馈可以帮助空中机器人跟踪这艘船,而基于系统模型的轨迹规划方法可以预测其未来的姿态。使用ROS框架的仿真结果验证了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信