{"title":"Mining Significant Temporal Networks Is Polynomial","authors":"G. Sciavicco, Matteo Zavatteri, T. Villa","doi":"10.4230/LIPIcs.TIME.2020.11","DOIUrl":null,"url":null,"abstract":"A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism that tackles controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper, we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design of controllable temporal networks mined from traces that also contain information on uncontrollable events. 2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Information systems → Data mining; Computing methodologies → Planning and scheduling; Mathematics of computing → Graph algorithms","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"11:1-11:12"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2020.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism that tackles controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper, we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design of controllable temporal networks mined from traces that also contain information on uncontrollable events. 2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Information systems → Data mining; Computing methodologies → Planning and scheduling; Mathematics of computing → Graph algorithms