{"title":"Computer-aided verification technology for biology","authors":"T. Henzinger","doi":"10.1109/FMCAD.2014.6987588","DOIUrl":null,"url":null,"abstract":"We summarize some recent results on using computed-aided verification technology for understanding biological systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene regulatory circuits.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"59 2 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2014.6987588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We summarize some recent results on using computed-aided verification technology for understanding biological systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene regulatory circuits.