BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models

R J. Pub Date : 2021-12-29 DOI:10.32614/rj-2023-016
Yu-Siang Shen, Matthew A Psioda, J. Ibrahim
{"title":"BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models","authors":"Yu-Siang Shen, Matthew A Psioda, J. Ibrahim","doi":"10.32614/rj-2023-016","DOIUrl":null,"url":null,"abstract":"The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and type I error calculation and model fitting after incorporating historical data with the power prior and the normalized power prior for generalized linear models (GLM). The package accommodates summary level data or subject level data with covariate information. It supports use of multiple historical datasets as well as design without historical data. Supported distributions for responses include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter $a_0$ can be fixed or modeled as random using a normalized power prior for each of these distributions. In addition, the package supports the use of arbitrary sampling priors for computing Bayesian power and type I error rates, and has specific features for GLMs that semi-automatically generate sampling priors from historical data. Since sample size determination (SSD) for GLMs is computationally intensive, an approximation method based on asymptotic theory has been implemented to support applications using the power prior. In addition to describing the statistical methodology and functions implemented in the package to enable SSD, we also demonstrate the use of BayesPPD in two comprehensive case studies.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"1 1","pages":"335-351"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and type I error calculation and model fitting after incorporating historical data with the power prior and the normalized power prior for generalized linear models (GLM). The package accommodates summary level data or subject level data with covariate information. It supports use of multiple historical datasets as well as design without historical data. Supported distributions for responses include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter $a_0$ can be fixed or modeled as random using a normalized power prior for each of these distributions. In addition, the package supports the use of arbitrary sampling priors for computing Bayesian power and type I error rates, and has specific features for GLMs that semi-automatically generate sampling priors from historical data. Since sample size determination (SSD) for GLMs is computationally intensive, an approximation method based on asymptotic theory has been implemented to support applications using the power prior. In addition to describing the statistical methodology and functions implemented in the package to enable SSD, we also demonstrate the use of BayesPPD in two comprehensive case studies.
BayesPPD:一个基于广义线性模型幂和归一化幂先验的贝叶斯样本量确定的R包
R包BayesPPD(贝叶斯功率先验设计)支持贝叶斯功率和I型误差计算和模型拟合,将历史数据与广义线性模型(GLM)的功率先验和归一化功率先验结合起来。该包包含具有协变量信息的摘要级数据或主题级数据。它支持使用多个历史数据集,也支持没有历史数据的设计。支持的响应分布包括正态分布、二进制分布(伯努利/二项式)、泊松分布和指数分布。功率参数$a_0$可以固定,也可以使用每个分布的标准化功率先验随机建模。此外,该包支持使用任意采样先验来计算贝叶斯功率和I型错误率,并具有针对glm的特定功能,可以从历史数据中半自动生成采样先验。由于glm的样本大小确定(SSD)是计算密集型的,因此实现了基于渐近理论的近似方法来支持使用功率先验的应用。除了描述统计方法和在软件包中实现的功能以启用SSD之外,我们还在两个综合案例研究中演示了BayesPPD的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信