Performance Analysis and Energy Conservation of PV Based Hybrid Power System

S. K. Rajput, D. K. Dheer
{"title":"Performance Analysis and Energy Conservation of PV Based Hybrid Power System","authors":"S. K. Rajput, D. K. Dheer","doi":"10.13052/dgaej2156-3306.3814","DOIUrl":null,"url":null,"abstract":"The increase in energy consumption due to population expansion and scarcity of fossil fuels is happening simultaneously in developing countries like India. In this regard, commercial buildings are increasingly required to employ renewable energy sources (like PV) and conserve the energy for improving energy efficiency. This research article examines the performance of such PV-based hybrid power system, consists of 11 kV grid supply, 100 kWp PV plant & 200 kVA diesel generator. The results indicate that the addition of 68.34 kVAr shunt capacitor bank to Automatic Power Factor Compensation (APFC) panel, keeps the Power Factor (PF) unity and also eliminates the PF penalties in electricity bills. The maximum demand (MD) saving Rs 54528.00 (INR) on annual basis is achieved after the integration of PV with low voltage (433 V) distribution system and grid supply (11 kV). This integration has also reduced the average transformer loading to 64.73% and improved the transformer life. However the development of high current harmonics (average value 47.10%) must be reduced to ensure the life of the electrical load.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in energy consumption due to population expansion and scarcity of fossil fuels is happening simultaneously in developing countries like India. In this regard, commercial buildings are increasingly required to employ renewable energy sources (like PV) and conserve the energy for improving energy efficiency. This research article examines the performance of such PV-based hybrid power system, consists of 11 kV grid supply, 100 kWp PV plant & 200 kVA diesel generator. The results indicate that the addition of 68.34 kVAr shunt capacitor bank to Automatic Power Factor Compensation (APFC) panel, keeps the Power Factor (PF) unity and also eliminates the PF penalties in electricity bills. The maximum demand (MD) saving Rs 54528.00 (INR) on annual basis is achieved after the integration of PV with low voltage (433 V) distribution system and grid supply (11 kV). This integration has also reduced the average transformer loading to 64.73% and improved the transformer life. However the development of high current harmonics (average value 47.10%) must be reduced to ensure the life of the electrical load.
基于光伏的混合动力系统性能分析与节能
在印度等发展中国家,由于人口扩张和化石燃料短缺而导致的能源消耗增加正在同时发生。在这方面,商业楼宇越来越需要采用可再生能源(如光伏)和节约能源,以提高能源效率。本文研究了由11kv电网供电、100kwp光伏电站和200kva柴油发电机组成的基于光伏的混合电力系统的性能。结果表明,在功率因数自动补偿(APFC)面板上增加68.34 kVAr并联电容器组,既保持了功率因数(PF)的统一,又消除了电费中的PF罚款。在光伏与低压(433伏)配电系统和电网供应(11千伏)集成后,每年最大需求(MD)节省54528.00卢比(印度卢比)。这种集成还将变压器的平均负载降低到64.73%,并提高了变压器的寿命。然而,必须减少大电流谐波的发展(平均值47.10%),以确保电气负载的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信