Two Datasets for Sentiment Analysis in Software Engineering

B. Lin, Fiorella Zampetti, R. Oliveto, M. D. Penta, Michele Lanza, G. Bavota
{"title":"Two Datasets for Sentiment Analysis in Software Engineering","authors":"B. Lin, Fiorella Zampetti, R. Oliveto, M. D. Penta, Michele Lanza, G. Bavota","doi":"10.1109/ICSME.2018.00084","DOIUrl":null,"url":null,"abstract":"Software engineering researchers have used sentiment analysis for various purposes, such as analyzing app reviews and detecting developers' emotions. However, most existing sentiment analysis tools do not achieve satisfactory performance when used in software-related contexts, and there are not many ready-to-use datasets in this domain. To facilitate the emergence of better tools and sufficient validation of sentiment analysis techniques, we present two datasets with labeled sentiments, which are extracted from mobile app reviews and Stack Overflow discussions, respectively. The web app we created to support the labeling of the Stack Overflow dataset is also provided.","PeriodicalId":6572,"journal":{"name":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"1 1","pages":"712-712"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2018.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Software engineering researchers have used sentiment analysis for various purposes, such as analyzing app reviews and detecting developers' emotions. However, most existing sentiment analysis tools do not achieve satisfactory performance when used in software-related contexts, and there are not many ready-to-use datasets in this domain. To facilitate the emergence of better tools and sufficient validation of sentiment analysis techniques, we present two datasets with labeled sentiments, which are extracted from mobile app reviews and Stack Overflow discussions, respectively. The web app we created to support the labeling of the Stack Overflow dataset is also provided.
软件工程情感分析的两个数据集
软件工程研究人员已经将情感分析用于各种目的,例如分析应用程序评论和检测开发人员的情绪。然而,大多数现有的情感分析工具在与软件相关的环境中使用时都没有达到令人满意的性能,并且在该领域没有很多现成的数据集。为了促进更好的工具的出现和情感分析技术的充分验证,我们提出了两个带有标记情感的数据集,它们分别从移动应用程序评论和Stack Overflow讨论中提取。我们创建的支持Stack Overflow数据集标记的web应用程序也提供了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信