Detection and Quantification of Sulfate-Reducing and Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in Oilfield Using Functional Markers and Quantitative PCR
B. Nasser, Ramadan Ar, H. Ry, Mohamed Me, W. Ismail
{"title":"Detection and Quantification of Sulfate-Reducing and Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in Oilfield Using Functional Markers and Quantitative PCR","authors":"B. Nasser, Ramadan Ar, H. Ry, Mohamed Me, W. Ismail","doi":"10.4172/2157-7463.1000348","DOIUrl":null,"url":null,"abstract":"Oilfield water samples from injection water treatment facility and soil/sludge samples from Gas Oil Separation Plant (GOSP) at Saudi Aramco were analyzed for the presence of SRB and PAH-degrading bacteria. SRB were detected by targeting a fragment of the apsA gene encoding adenosine-5-phosphosulfate reductase, which is characteristic of all SRB. The PAH-degrading bacteria were detected using a primer pair that amplifies a fragment of the gene encoding the large subunit of the naphthalene dioxygenase gene nahA. The nahA gene was detected in almost half of the soil/sludge samples with the highest copy number of 60540 copies/g soil/sludge. Most of the analyzed water samples contained high copy numbers of nahA gene with the highest copy number 3846 copies/ml. Most of the analyzed water samples revealed the presence of high copy numbers of the apsA gene with the highest copy number of 44 x 106/ml in sample number 2. Only 7 of the soil/sludge samples revealed the presence of the apsA gene with the highest copy number of 107920/g soil/sludge in sample number 11. In contrast to the nahA gene, the highest copy numbers of the apsA gene were detected in the water samples. SRB and PAH-degrading bacteria exist in some Saudi oilfields and appear to play a role in the H2S production and PAH degradation.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"176 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Oilfield water samples from injection water treatment facility and soil/sludge samples from Gas Oil Separation Plant (GOSP) at Saudi Aramco were analyzed for the presence of SRB and PAH-degrading bacteria. SRB were detected by targeting a fragment of the apsA gene encoding adenosine-5-phosphosulfate reductase, which is characteristic of all SRB. The PAH-degrading bacteria were detected using a primer pair that amplifies a fragment of the gene encoding the large subunit of the naphthalene dioxygenase gene nahA. The nahA gene was detected in almost half of the soil/sludge samples with the highest copy number of 60540 copies/g soil/sludge. Most of the analyzed water samples contained high copy numbers of nahA gene with the highest copy number 3846 copies/ml. Most of the analyzed water samples revealed the presence of high copy numbers of the apsA gene with the highest copy number of 44 x 106/ml in sample number 2. Only 7 of the soil/sludge samples revealed the presence of the apsA gene with the highest copy number of 107920/g soil/sludge in sample number 11. In contrast to the nahA gene, the highest copy numbers of the apsA gene were detected in the water samples. SRB and PAH-degrading bacteria exist in some Saudi oilfields and appear to play a role in the H2S production and PAH degradation.