Mean exit time and escape probability for the stochastic logistic growth model with multiplicative α-stable Lévy noise

Almaz Tesfay, Daniel Tesfay, A. Khalaf, J. Brannan
{"title":"Mean exit time and escape probability for the stochastic logistic growth model with multiplicative α-stable Lévy noise","authors":"Almaz Tesfay, Daniel Tesfay, A. Khalaf, J. Brannan","doi":"10.1142/s0219493721500167","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate a stochastic logistic fish growth model driven by both white noise and non-Gaussian noise. We focus our study on the mean time to extinction, escape probability to measure the noise-induced extinction probability and the Fokker-Planck equation for fish population X(t). In the Gaussian case, these quantities satisfy local partial differential equations while in the non-Gaussian case, they satisfy nonlocal partial differential equations. Following a discussion of existence, uniqueness, and stability, we calculate numerical approximations of the solutions of those equations. For each noise model we then compare the behaviors of the mean time to extinction and the solution of the Fokker-Planck equation as growth rate r, carrying capacity K, the intensity of Gaussian noise ${\\lambda}$, noise intensity ${\\sigma}$ and stability index ${\\alpha}$ vary. The MET from the interval (0,1) at the right boundary is finite if ${\\lambda} {\\sqrt2}$, the MET from (0,1) at this boundary is infinite. A larger stability index ${\\alpha}$ is less likely to lead to the extinction of the fish population.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219493721500167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we formulate a stochastic logistic fish growth model driven by both white noise and non-Gaussian noise. We focus our study on the mean time to extinction, escape probability to measure the noise-induced extinction probability and the Fokker-Planck equation for fish population X(t). In the Gaussian case, these quantities satisfy local partial differential equations while in the non-Gaussian case, they satisfy nonlocal partial differential equations. Following a discussion of existence, uniqueness, and stability, we calculate numerical approximations of the solutions of those equations. For each noise model we then compare the behaviors of the mean time to extinction and the solution of the Fokker-Planck equation as growth rate r, carrying capacity K, the intensity of Gaussian noise ${\lambda}$, noise intensity ${\sigma}$ and stability index ${\alpha}$ vary. The MET from the interval (0,1) at the right boundary is finite if ${\lambda} {\sqrt2}$, the MET from (0,1) at this boundary is infinite. A larger stability index ${\alpha}$ is less likely to lead to the extinction of the fish population.
具有乘性α-稳定lsamvy噪声的随机logistic增长模型的平均退出时间和逃逸概率
本文建立了一个由白噪声和非高斯噪声驱动的随机logistic鱼类生长模型。我们重点研究了平均灭绝时间、逃逸概率(用于测量噪声引起的灭绝概率)和种群X(t)的Fokker-Planck方程。在高斯情况下,这些量满足局部偏微分方程,而在非高斯情况下,它们满足非局部偏微分方程。在讨论了这些方程的存在性、唯一性和稳定性之后,我们计算了这些方程解的数值逼近。对于每个噪声模型,我们比较了平均消光时间的行为和Fokker-Planck方程的解,随着增长率r,承载能力K,高斯噪声强度${\lambda}$,噪声强度${\sigma}$和稳定性指数${\alpha}$的变化。右边界(0,1)处的MET是有限的,如果${\lambda} {\sqrt2}$,则此边界(0,1)处的MET是无限的。稳定指数${\alpha}$越大,导致鱼类种群灭绝的可能性就越小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信