Wang Yi, Y. Xiang, guang-de Li, hai-Feng Cheng, jian-Hui Cao, Cao Jie, yin-Wei Ma
{"title":"Mechanical properties of N440/SiO2 composites with fugitive carbon interphases","authors":"Wang Yi, Y. Xiang, guang-de Li, hai-Feng Cheng, jian-Hui Cao, Cao Jie, yin-Wei Ma","doi":"10.1080/09276440.2023.2185352","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mechanical properties of NextelTM 440 fiber-reinforced SiO2 composites containing fugitive carbon (FC) interphases were investigated. The three-point bending (TPB) test at room temperature indicated that FC interphases were crucial to the strength improvement. After employing FC interphases, the fiber/matrix bonding strength was weak enough for crack propagation, thus leading to the increase of flexural strength by about 2.1 times. The TPB test at high-temperature showed that the flexural strength decreased firstly and then increased as temperature increased, and the fracture mode changed from ductile to brittle. The lowest value of 92.3 ± 13.5 (MPa) was obtained at 1000°C. With the aid of the single edge notched beam test combined with the digital image correlation technique, cracks propagation process during fracture was well clarified.","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2185352","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Mechanical properties of NextelTM 440 fiber-reinforced SiO2 composites containing fugitive carbon (FC) interphases were investigated. The three-point bending (TPB) test at room temperature indicated that FC interphases were crucial to the strength improvement. After employing FC interphases, the fiber/matrix bonding strength was weak enough for crack propagation, thus leading to the increase of flexural strength by about 2.1 times. The TPB test at high-temperature showed that the flexural strength decreased firstly and then increased as temperature increased, and the fracture mode changed from ductile to brittle. The lowest value of 92.3 ± 13.5 (MPa) was obtained at 1000°C. With the aid of the single edge notched beam test combined with the digital image correlation technique, cracks propagation process during fracture was well clarified.
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields