A. Almulihi, Fahd S. Alharithi, Seifeddine Mechti, Roobaea Alroobaea, S. Rubaiee
{"title":"A Software for Thorax Images Analysis Based on Deep Learning","authors":"A. Almulihi, Fahd S. Alharithi, Seifeddine Mechti, Roobaea Alroobaea, S. Rubaiee","doi":"10.4018/IJOSSP.2021010104","DOIUrl":null,"url":null,"abstract":"People suspected of having COVID-19 need to know quickly if they are infected, so that they can isolate themselves, receive treatment, and inform those with whom they have been in close contact. Currently, the formal diagnosis of COVID-19 infection requires laboratory analysis of blood samples or swabs from the throat and nose. The lab test requires specialized equipment and takes at least 24 hours to produce a result. For this reason, in this paper, the authors tackle the problem of the detection of COVID-19 by developing an open source software to analyze chest x-ray thorax images. The method is based on supervised learning applied to 5000 images. However, deep learning techniques such as convolutional neural network (CNN) and mask R-CNN gives good results comparing with classic medical imaging. Using a dynamic learning rate, they obtained 0.96 accuracy for the training phase and 0.82 for the test. The results of our free tool are comparable to the best state of the art open source systems.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"50 1","pages":"60-71"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
People suspected of having COVID-19 need to know quickly if they are infected, so that they can isolate themselves, receive treatment, and inform those with whom they have been in close contact. Currently, the formal diagnosis of COVID-19 infection requires laboratory analysis of blood samples or swabs from the throat and nose. The lab test requires specialized equipment and takes at least 24 hours to produce a result. For this reason, in this paper, the authors tackle the problem of the detection of COVID-19 by developing an open source software to analyze chest x-ray thorax images. The method is based on supervised learning applied to 5000 images. However, deep learning techniques such as convolutional neural network (CNN) and mask R-CNN gives good results comparing with classic medical imaging. Using a dynamic learning rate, they obtained 0.96 accuracy for the training phase and 0.82 for the test. The results of our free tool are comparable to the best state of the art open source systems.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.