Nonlinearity In Similar Structures: On (3a−1)(3b−1) = (5c−1)(5d−1), And gu=fv.

viXra Pub Date : 2020-06-01 DOI:10.2139/ssrn.3566925
Michael C. I. Nwogugu
{"title":"Nonlinearity In Similar Structures: On (3a−1)(3b−1) = (5c−1)(5d−1), And gu=fv.","authors":"Michael C. I. Nwogugu","doi":"10.2139/ssrn.3566925","DOIUrl":null,"url":null,"abstract":"Liptai, Nemeth, et. al. (2020) conjectured (and supposedly proved) that in the diophantine equation (3a−1)(3b−1)=(5c−1)(5d−1) in positive integers a≤b, and c≤d, the only solution to the title equation is (a,b,c,d)=(1,2,1,1). This article proves that the Liptai, Nemeth, et. al. (2020) conjecture and results are wrong, and that there is more than one solution for the equation (3a−1)(3b−1)=(5c−1)(5d−1). This article introduces “Existence Conditions” and new theories of “Rational Equivalence”, and a new theorem pertaining to the equation gu=fv.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3566925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liptai, Nemeth, et. al. (2020) conjectured (and supposedly proved) that in the diophantine equation (3a−1)(3b−1)=(5c−1)(5d−1) in positive integers a≤b, and c≤d, the only solution to the title equation is (a,b,c,d)=(1,2,1,1). This article proves that the Liptai, Nemeth, et. al. (2020) conjecture and results are wrong, and that there is more than one solution for the equation (3a−1)(3b−1)=(5c−1)(5d−1). This article introduces “Existence Conditions” and new theories of “Rational Equivalence”, and a new theorem pertaining to the equation gu=fv.
相似结构的非线性:On (3a−1)(3b−1)= (5c−1)(5d−1),且gu=fv。
Liptai, Nemeth等人(2020)推测(并假定证明)在正整数a≤b, c≤d的丢芬图方程(3a−1)(3b−1)=(5c−1)(5d−1)中,标题方程的唯一解是(a,b,c,d)=(1,2,1,1)。本文证明了Liptai, Nemeth, et. al.(2020)猜想和结果是错误的,方程(3a−1)(3b−1)=(5c−1)(5d−1)存在不止一个解。本文介绍了“存在条件”和“理性等价”的新理论,以及关于方程gu=fv的一个新定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信