{"title":"Error recognition in the Cantor cube","authors":"P. Pasteczka","doi":"10.2478/aupcsm-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.