Error recognition in the Cantor cube

IF 0.1 Q4 MATHEMATICS
P. Pasteczka
{"title":"Error recognition in the Cantor cube","authors":"P. Pasteczka","doi":"10.2478/aupcsm-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.
康托立方体中的错误识别
基于T. Banakh, Sz。Głąb, E. Jabłońska和J. Swaczyna我们提供了无限单消息传输协议的研究。这样的协议与一组可接受的消息(即康托立方的子集)相关联。利用Banach-Mazur博弈,我们证明了所有检测错误的协议都是Baire空间,而一般的(特别是极大的)协议既不是Borel也不是微薄的。我们还证明了康托立方体可以分解为两个薄集,这两个薄集可以被认为是奇偶位的无限对偶。这一结果与D. Niwiński和E. Kopczyński在2014年定义的所谓xor集有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信