3D-CariNet: End-to-end 3D Caricature Generation from Natural Face Images with Differentiable Renderer

Meijia Huang, Ju Dai, Junjun Pan, Junxuan Bai, Hong Qin
{"title":"3D-CariNet: End-to-end 3D Caricature Generation from Natural Face Images with Differentiable Renderer","authors":"Meijia Huang, Ju Dai, Junjun Pan, Junxuan Bai, Hong Qin","doi":"10.2312/PG.20211387","DOIUrl":null,"url":null,"abstract":"Caricatures are an artistic representation of human faces to express satire and humor. Caricature generation of human faces is a hotspot in CG research. Previous work mainly focuses on 2D caricatures generation from face photos or 3D caricature reconstruction from caricature images. In this paper, we propose a novel end-to-end method to directly generate personalized 3D caricatures from a single natural face image. It can create not only exaggerated geometric shapes, but also heterogeneous texture styles. Firstly, we construct a synthetic dataset containing matched data pairs composed of face photos, caricature images, and 3D caricatures. Then, we design a graph convolutional autoencoder to build a non-linear colored mesh model to learn the shape and texture of 3D caricatures. To make the network end-to-end trainable, we incorporate a differentiable renderer to render 3D caricatures into caricature images inversely. Experiments demonstrate that our method can achieve 3D caricature generation with various texture styles from face images while maintaining personality characteristics.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"267 1","pages":"49-54"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20211387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Caricatures are an artistic representation of human faces to express satire and humor. Caricature generation of human faces is a hotspot in CG research. Previous work mainly focuses on 2D caricatures generation from face photos or 3D caricature reconstruction from caricature images. In this paper, we propose a novel end-to-end method to directly generate personalized 3D caricatures from a single natural face image. It can create not only exaggerated geometric shapes, but also heterogeneous texture styles. Firstly, we construct a synthetic dataset containing matched data pairs composed of face photos, caricature images, and 3D caricatures. Then, we design a graph convolutional autoencoder to build a non-linear colored mesh model to learn the shape and texture of 3D caricatures. To make the network end-to-end trainable, we incorporate a differentiable renderer to render 3D caricatures into caricature images inversely. Experiments demonstrate that our method can achieve 3D caricature generation with various texture styles from face images while maintaining personality characteristics.
3D- carinet:端到端的3D漫画生成从自然面孔图像与可微分渲染
漫画是一种用人脸来表达讽刺和幽默的艺术表现。人脸漫画生成是CG研究的一个热点。以前的工作主要集中在从人脸照片生成二维漫画或从漫画图像重建三维漫画。在本文中,我们提出了一种新颖的端到端方法,从单个自然面部图像直接生成个性化的3D漫画。它不仅可以创造夸张的几何形状,还可以创造异质的纹理风格。首先,我们构建了一个包含人脸照片、漫画图像和3D漫画图像组成的匹配数据对的合成数据集。然后,我们设计了一个图形卷积自编码器来建立一个非线性的彩色网格模型来学习三维漫画的形状和纹理。为了使网络端到端可训练,我们结合了一个可微分渲染器,将3D漫画反向渲染为漫画图像。实验表明,该方法可以在保持人脸个性特征的前提下,实现多种纹理风格的三维漫画生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信