{"title":"Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC","authors":" Banerjee Amitayu, Gyenis Zalán","doi":"10.14712/1213-7243.2021.028","DOIUrl":null,"url":null,"abstract":"We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2. If in a partially ordered set, all chains are finite and all antichains have size $\\aleph_{\\alpha}$, then the set has size $\\aleph_{\\alpha}$ for any regular $\\aleph_{\\alpha}$. 3. CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). 4. CWF (Every partially ordered set has a cofinal well-founded subset). 5. DT (Dilworth's decomposition theorem for infinite p.o.sets of finite width). 6. If the chromatic number of a graph $G_{1}$ is finite (say $k<\\omega$), and the chromatic number of another graph $G_{2}$ is infinite, then the chromatic number of $G_{1}\\times G_{2}$ is $k$. 7. For an infinite graph $G=(V_{G}, E_{G})$ and a finite graph $H=(V_{H}, E_{H})$, if every finite subgraph of $G$ has a homomorphism into $H$, then so has $G$. Further we study a few statements restricted to linearly-ordered structures without the axiom of choice.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"144 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2021.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2. If in a partially ordered set, all chains are finite and all antichains have size $\aleph_{\alpha}$, then the set has size $\aleph_{\alpha}$ for any regular $\aleph_{\alpha}$. 3. CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). 4. CWF (Every partially ordered set has a cofinal well-founded subset). 5. DT (Dilworth's decomposition theorem for infinite p.o.sets of finite width). 6. If the chromatic number of a graph $G_{1}$ is finite (say $k<\omega$), and the chromatic number of another graph $G_{2}$ is infinite, then the chromatic number of $G_{1}\times G_{2}$ is $k$. 7. For an infinite graph $G=(V_{G}, E_{G})$ and a finite graph $H=(V_{H}, E_{H})$, if every finite subgraph of $G$ has a homomorphism into $H$, then so has $G$. Further we study a few statements restricted to linearly-ordered structures without the axiom of choice.