A Penalized Autoencoder Approach for Nonlinear Independent Component Analysis

Tianwen Wei, S. Chrétien
{"title":"A Penalized Autoencoder Approach for Nonlinear Independent Component Analysis","authors":"Tianwen Wei, S. Chrétien","doi":"10.1109/ICASSP.2019.8682469","DOIUrl":null,"url":null,"abstract":"We propose Independent Component Autoencoder (ICAE), a deep neural network-based framework for nonlinear Independent Component Analysis (ICA). The proposed method consists of a penalized autoencoder and a training objective that is to minimize a combination of the reconstruction loss and an ICA contrast. Unlike many previous ICA methods that are usually tailored to separate specific mixture, our method can recover sources from various mixtures, without prior knowledge on the nature of that mixture.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"51 1","pages":"2797-2801"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose Independent Component Autoencoder (ICAE), a deep neural network-based framework for nonlinear Independent Component Analysis (ICA). The proposed method consists of a penalized autoencoder and a training objective that is to minimize a combination of the reconstruction loss and an ICA contrast. Unlike many previous ICA methods that are usually tailored to separate specific mixture, our method can recover sources from various mixtures, without prior knowledge on the nature of that mixture.
非线性独立分量分析的惩罚自编码器方法
提出了一种基于深度神经网络的非线性独立分量分析(ICA)框架——独立分量自编码器(ICAE)。所提出的方法由一个惩罚自编码器和一个训练目标组成,该目标是最小化重建损失和ICA对比的组合。与之前的ICA方法不同,我们的方法通常是针对特定混合物进行定制的,而我们的方法可以从各种混合物中恢复源,而无需事先了解混合物的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信